期刊论文详细信息
Journal of Translational Medicine
A vascular biology network model focused on inflammatory processes to investigate atherogenesis and plaque instability
Manuel C Peitsch3  Julia Hoeng3  Katrin Stolle3  Renee Deehan1  Carine Poussin3  Vy Hoang1  Carole Mathis3  Michael J Peck3  Emilija Veljkovic3  R Brett Fields1  Marja Talikka3  Aaron VanHooser1  Stephan Gebel2  Jurjen W Westra1  Natalia Boukharov1  Walter K Schlage2  Stéphanie Boué3  Héctor De León3 
[1] Selventa, One Alewife Center, Cambridge, MA 02140, USA;Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Fuggerstr.3, 51149 Koeln, Germany;Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
关键词: Atherosclerosis modeling;    Computational modeling;    Vascular biology networks;    Plaque destabilization;    Vascular systems biology;   
Others  :  1148786
DOI  :  10.1186/1479-5876-12-185
 received in 2014-02-28, accepted in 2014-06-09,  发布年份 2014
PDF
【 摘 要 】

Background

Numerous inflammation-related pathways have been shown to play important roles in atherogenesis. Rapid and efficient assessment of the relative influence of each of those pathways is a challenge in the era of “omics” data generation. The aim of the present work was to develop a network model of inflammation-related molecular pathways underlying vascular disease to assess the degree of translatability of preclinical molecular data to the human clinical setting.

Methods

We constructed and evaluated the Vascular Inflammatory Processes Network (V-IPN), a model representing a collection of vascular processes modulated by inflammatory stimuli that lead to the development of atherosclerosis.

Results

Utilizing the V-IPN as a platform for biological discovery, we have identified key vascular processes and mechanisms captured by gene expression profiling data from four independent datasets from human endothelial cells (ECs) and human and murine intact vessels. Primary ECs in culture from multiple donors revealed a richer mapping of mechanisms identified by the V-IPN compared to an immortalized EC line. Furthermore, an evaluation of gene expression datasets from aortas of old ApoE-/- mice (78 weeks) and human coronary arteries with advanced atherosclerotic lesions identified significant commonalities in the two species, as well as several mechanisms specific to human arteries that are consistent with the development of unstable atherosclerotic plaques.

Conclusions

We have generated a new biological network model of atherogenic processes that demonstrates the power of network analysis to advance integrative, systems biology-based knowledge of cross-species translatability, plaque development and potential mechanisms leading to plaque instability.

【 授权许可】

   
2014 De León et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150404205433145.pdf 2276KB PDF download
Figure 6. 74KB Image download
Figure 5. 169KB Image download
Figure 4. 33KB Image download
Figure 3. 115KB Image download
Figure 2. 84KB Image download
Figure 1. 67KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Ross R: Atherosclerosis-an inflammatory disease. N Engl J Med 1999, 340:115-126.
  • [2]Libby P, Ridker PM, Maseri A: Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol 2012, 32:2045-2051.
  • [3]Howard G, Wagenknecht LE, Burke GL, Diez-Roux A, Evans GW, McGovern P, Nieto FJ, Tell GS: Cigarette smoking and progression of atherosclerosis: The Atherosclerosis Risk in Communities (ARIC) Study. JAMA 1998, 279:119-124.
  • [4]von Holt K, Lebrun S, Stinn W, Conroy L, Wallerath T, Schleef R: Progression of atherosclerosis in the Apo E-/- model: 12-month exposure to cigarette mainstream smoke combined with high-cholesterol/fat diet. Atherosclerosis 2009, 205:135-143.
  • [5]Boue S, Tarasov K, Janis M, Lebrun S, Hurme R, Schlage W, Lietz M, Vuillaume G, Ekroos K, Steffen Y, Peitsch MC, Laaksonen R, Hoeng J: Modulation of atherogenic lipidome by cigarette smoke in apolipoprotein E-deficient mice. Atherosclerosis 2012, 225:328-334.
  • [6]Celermajer DS, Sorensen KE, Georgakopoulos D, Bull C, Thomas O, Robinson J, Deanfield JE: Cigarette smoking is associated with dose-related and potentially reversible impairment of endothelium-dependent dilation in healthy young adults. Circulation 1993, 88:2149-2155.
  • [7]Barua RS, Ambrose JA, Saha DC, Eales-Reynolds LJ, DeVoe MC, Zervas JG: Smoking is associated with altered endothelial-derived fibrinolytic and antithrombotic factors: an in vitro demonstration. Circulation 2002, 106:905-908.
  • [8]Chen XP, Xun KL, Wu Q, Zhang TT, Shi JS, Du GH: Oxidized low density lipoprotein receptor-1 mediates oxidized low density lipoprotein-induced apoptosis in human umbilical vein endothelial cells: role of reactive oxygen species. Vascul Pharmacol 2007, 47:1-9.
  • [9]Barrett T, Edgar R: Gene expression omnibus: microarray data storage, submission, retrieval, and analysis. Methods Enzymol 2006, 411:352-369.
  • [10]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology: The Gene Ontology Consortium. Nat Genet 2000, 25:25-29.
  • [11]Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M: KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 2010, 38:D355-360.
  • [12]Chen G, Gharib TG, Huang CC, Taylor JM, Misek DE, Kardia SL, Giordano TJ, Iannettoni MD, Orringer MB, Hanash SM, Beer DG: Discordant protein and mRNA expression in lung adenocarcinomas. Mol Cell Proteomics 2002, 1:304-313.
  • [13]Guo Y, Xiao P, Lei S, Deng F, Xiao GG, Liu Y, Chen X, Li L, Wu S, Chen Y, Jiang H, Tan L, Xie J, Zhu X, Liang S, Deng H: How is mRNA expression predictive for protein expression? A correlation study on human circulating monocytes. Acta Biochim Biophys Sin (Shanghai) 2008, 40:426-436.
  • [14]Vogel C, Marcotte EM: Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 2012, 13:227-232.
  • [15]Catlett NL, Bargnesi AJ, Ungerer S, Seagaran T, Ladd W, Elliston KO, Pratt D: Reverse causal reasoning: applying qualitative causal knowledge to the interpretation of high-throughput data. BMC Bioinformatics 2013, 14:340.
  • [16]Schlage WK, Westra JW, Gebel S, Catlett NL, Mathis C, Frushour BP, Hengstermann A, Van Hooser A, Poussin C, Wong B, Lietz M, Park J, Drubin D, Veljkovic E, Peitsch MC, Hoeng J, Deehan R: A computable cellular stress network model for non-diseased pulmonary and cardiovascular tissue. BMC Syst Biol 2011, 5:168.
  • [17]Gebel S, Lichtner RB, Frushour B, Schlage WK, Hoang V, Talikka M, Hengstermann A, Mathis C, Veljkovic E, Peck M, Peitsch MC, Deehan R, Hoeng J, Westra JW: Construction of a computable network model for DNA damage, autophagy, cell death, and senescence. Bioinform Biol Insights 2013, 7:97-117.
  • [18]Westra JW, Schlage WK, Hengstermann A, Gebel S, Mathis C, Thomson T, Wong B, Hoang V, Veljkovic E, Peck M, Lichtner RB, Weisensee D, Talikka M, Deehan R, Hoeng J, Peitsch MC: A modular cell-type focused inflammatory process network model for non-diseased pulmonary tissue. Bioinform Biol Insights 2013, 7:167-192.
  • [19]Westra JW, Schlage WK, Frushour BP, Gebel S, Catlett NL, Han W, Eddy SF, Hengstermann A, Matthews AL, Mathis C, Lichtner RB, Poussin C, Talikka M, Veljkovic E, Van Hooser AA, Wong B, Maria MJ, Peitsch MC, Deehan R, Hoeng J: Construction of a computable cell proliferation network focused on non-diseased lung cells. BMC Syst Biol 2011, 5:105.
  • [20]Park JS, Schlage WK, Frushour BP, Talikka M, Toedter G, Gebel S, Deehan R, Veljkovic E, Westra JW MJP, Boue S, Kogel U, Gonzalez-Suarez I, Hengstermann A, Peitsch MC, Hoeng J: Construction of a computable network model of tissue repair and angiogenesis in the lung. J Clinic Toxicol 2013, S12:002.
  • [21]Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R: ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb 1994, 14:133-140.
  • [22]Lietz M, Berges A, Lebrun S, Meurrens K, Steffen Y, Stolle K, Schueller J, Boue S, Vuillaume G, Vanscheeuwijck P, Moehring M, Schlage W, De Leon H, Hoeng J, Peitsch M: Cigarette-smoke-induced atherogenic lipid profiles in plasma and vascular tissue of apolipoprotein E-deficient mice are attenuated by smoking cessation. Atherosclerosis 2013, 229:86-93.
  • [23]O'Donnell SM, Holm GH, Pierce JM, Tian B, Watson MJ, Chari RS, Ballard DW, Brasier AR, Dermody TS: Identification of an NF-kappaB-dependent gene network in cells infected by mammalian reovirus. J Virol 2006, 80:1077-1086.
  • [24]Mattaliano MD, Huard C, Cao W, Hill AA, Zhong W, Martinez RV, Harnish DC, Paulsen JE, Shih HH: LOX-1-dependent transcriptional regulation in response to oxidized LDL treatment of human aortic endothelial cells. Am J Physiol Cell Physiol 2009, 296:C1329-1337.
  • [25]Hagg S, Skogsberg J, Lundstrom J, Noori P, Nilsson R, Zhong H, Maleki S, Shang MM, Brinne B, Bradshaw M, Bajic VB, Samnegard A, Silveira A, Kaplan LM, Gigante B, Leander K, de Faire U, Rosfors S, Lockowandt U, Liska J, Konrad P, Takolander R, Franco-Cereceda A, Schadt EE, Ivert T, Hamsten A, Tegner J, Bjorkegren J: Multi-organ expression profiling uncovers a gene module in coronary artery disease involving transendothelial migration of leukocytes and LIM domain binding 2: the Stockholm Atherosclerosis Gene Expression (STAGE) study. PLoS Genet 2009, 5:e1000754.
  • [26]Costello CM, Howell K, Cahill E, McBryan J, Konigshoff M, Eickelberg O, Gaine S, Martin F, McLoughlin P: Lung-selective gene responses to alveolar hypoxia: potential role for the bone morphogenetic antagonist gremlin in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2008, 295:L272-284.
  • [27]Shao J, Katika MR, Schmeits PC, Hendriksen PJ, van Loveren H, Peijnenburg AA, Volger OL: Toxicogenomics-based identification of mechanisms for direct immunotoxicity. Toxicol Sci 2013, 135:328-346.
  • [28]Li JJ, Huang YQ, Basch R, Karpatkin S: Thrombin induces the release of angiopoietin-1 from platelets. Thromb Haemost 2001, 85:204-206.
  • [29]Pratico D: Antioxidants and endothelium protection. Atherosclerosis 2005, 181:215-224.
  • [30]Amberger A, Maczek C, Jurgens G, Michaelis D, Schett G, Trieb K, Eberl T, Jindal S, Xu Q, Wick G: Co-expression of ICAM-1, VCAM-1, ELAM-1 and Hsp60 in human arterial and venous endothelial cells in response to cytokines and oxidized low-density lipoproteins. Cell Stress Chaperones 1997, 2:94-103.
  • [31]Chai YC, Binion DG, Macklis R, Chisolm GM 3rd: Smooth muscle cell proliferation induced by oxidized LDL-borne lysophosphatidylcholine. Evidence for FGF-2 release from cells not extracellular matrix. Vascul Pharmacol 2002, 38:229-237.
  • [32]Chelland Campbell S, Moffatt RJ, Stamford BA: Smoking and smoking cessation – the relationship between cardiovascular disease and lipoprotein metabolism: a review. Atherosclerosis 2008, 201:225-235.
  • [33]Mayranpaa MI, Heikkila HM, Lindstedt KA, Walls AF, Kovanen PT: Desquamation of human coronary artery endothelium by human mast cell proteases: implications for plaque erosion. Coron Artery Dis 2006, 17:611-621.
  • [34]Masuda J, Ross R: Atherogenesis during low level hypercholesterolemia in the nonhuman primate: I Fatty streak formation. Arteriosclerosis 1990, 10:164-177.
  • [35]Mehta JL, Chen J, Hermonat PL, Romeo F, Novelli G: Lectin-like, oxidized low-density lipoprotein receptor-1 (LOX-1): a critical player in the development of atherosclerosis and related disorders. Cardiovasc Res 2006, 69:36-45.
  • [36]Berliner JA, Watson AD: A role for oxidized phospholipids in atherosclerosis. N Engl J Med 2005, 353:9-11.
  • [37]Itabe H, Obama T, Kato R: The Dynamics of Oxidized LDL during Atherogenesis. J Lipids 2011, 2011:418313.
  • [38]Chadwick CC, Shaw LJ, Winneker RC: TNF-alpha and 9-cis-retinoic acid synergistically induce ICAM-1 expression: evidence for interaction of retinoid receptors with NF-kappa B. Exp Cell Res 1998, 239:423-429.
  • [39]Romanoski CE, Lee S, Kim MJ, Ingram-Drake L, Plaisier CL, Yordanova R, Tilford C, Guan B, He A, Gargalovic PS, Kirchgessner TG, Berliner JA, Lusis AJ: Systems genetics analysis of gene-by-environment interactions in human cells. Am J Hum Genet 2010, 86:399-410.
  • [40]Mignotte B, Larcher JC, Zheng DQ, Esnault C, Coulaud D, Feunteun J: SV40 induced cellular immortalization: phenotypic changes associated with the loss of proliferative capacity in a conditionally immortalized cell line. Oncogene 1990, 5:1529-1533.
  • [41]RayChaudhury A, Frazier WA, D'Amore PA: Comparison of normal and tumorigenic endothelial cells: differences in thrombospondin production and responses to transforming growth factor-beta. J Cell Sci 1994, 107(Pt 1):39-46.
  • [42]Coleman R, Hayek T, Keidar S, Aviram M: A mouse model for human atherosclerosis: long-term histopathological study of lesion development in the aortic arch of apolipoprotein E-deficient (E0) mice. Acta Histochem 2006, 108:415-424.
  • [43]Rosenfeld ME, Polinsky P, Virmani R, Kauser K, Rubanyi G, Schwartz SM: Advanced atherosclerotic lesions in the innominate artery of the ApoE knockout mouse. Arterioscler Thromb Vasc Biol 2000, 20:2587-2592.
  • [44]Cilingiroglu M, Oh JH, Sugunan B, Kemp NJ, Kim J, Lee S, Zaatari HN, Escobedo D, Thomsen S, Milner TE, Feldman MD: Detection of vulnerable plaque in a murine model of atherosclerosis with optical coherence tomography. Catheter Cardiovasc Interv 2006, 67:915-923.
  • [45]Bond AR, Jackson CL: The fat-fed apolipoprotein E knockout mouse brachiocephalic artery in the study of atherosclerotic plaque rupture. J Biomed Biotechnol 2011, 2011:379069.
  • [46]Yla-Herttuala S, Bentzon JF, Daemen M, Falk E, Garcia-Garcia HM, Herrmann J, Hoefer I, Jukema JW, Krams R, Kwak BR, Marx N, Naruszewicz M, Newby A, Pasterkamp G, Serruys PW, Waltenberger J, Weber C, Tokgozoglu L: Stabilisation of atherosclerotic plaques. Position paper of the European Society of Cardiology (ESC) Working Group on atherosclerosis and vascular biology. Thromb Haemost 2011, 106:1-19.
  • [47]Whetzel AM, Sturek JM, Nagelin MH, Bolick DT, Gebre AK, Parks JS, Bruce AC, Skaflen MD, Hedrick CC: ABCG1 deficiency in mice promotes endothelial activation and monocyte-endothelial interactions. Arterioscler Thromb Vasc Biol 2010, 30:809-817.
  • [48]Yamashita S, Hirano K, Kuwasako T, Janabi M, Toyama Y, Ishigami M, Sakai N: Physiological and pathological roles of a multi-ligand receptor CD36 in atherogenesis; insights from CD36-deficient patients. Mol Cell Biochem 2007, 299:19-22.
  • [49]Piechota M, Banaszewska A, Dudziak J, Slomczynski M, Plewa R: Highly upregulated expression of CD36 and MSR1 in circulating monocytes of patients with acute coronary syndromes. Protein J 2012, 31:511-518.
  • [50]Nergiz-Unal R, Lamers MM, Van Kruchten R, Luiken JJ, Cosemans JM, Glatz JF, Kuijpers MJ, Heemskerk JW: Signaling role of CD36 in platelet activation and thrombus formation on immobilized thrombospondin or oxidized low-density lipoprotein. J Thromb Haemost 2011, 9:1835-1846.
  • [51]Riewald M, Ruf W: Orchestration of coagulation protease signaling by tissue factor. Trends Cardiovasc Med 2002, 12:149-154.
  • [52]Yang L, Zhou X, Guo R, Shi Y, Liang X, Heng X: Role of Kruppel-like factor 2 and protease-activated receptor-1 in vulnerable plaques of ApoE(-/-) mice and intervention with statin. Can J Cardiol 2013, 29:997-1005.
  • [53]Cheng C, Chrifi I, Pasterkamp G, Duckers HJ: Biological mechanisms of microvessel formation in advanced atherosclerosis: the big five. Trends Cardiovasc Med 2013, 23:153-164.
  • [54]Salmi M, Koskinen K, Henttinen T, Elima K, Jalkanen S: CLEVER-1 mediates lymphocyte transmigration through vascular and lymphatic endothelium. Blood 2004, 104:3849-3857.
  文献评价指标  
  下载次数:0次 浏览次数:1次