期刊论文详细信息
Clinical Epigenetics
Developmental genes targeted for epigenetic variation between twin-twin transfusion syndrome children
Francois Luks2  James F Padbury3  Charlotte M Boney1  Debra Watson-Smith2  Devin C Koestler4  Carmen J Marsit4 
[1] Department of Pediatrics, Rhode Island Hospital, Providence, RI USA;Program in Fetal Medicine, Warren Alpert Medical School at Brown University, Providence, RI USA;Department of Pediatrics, Women and Infants Hospital, Providence, RI, USA;Department of Community and Family Medicine, Section of Epidemiology and Biostatistics, Geisel Medical School at Dartmouth, Hanover, NH 03755, USA
关键词: Fetal;    Intrauterine environment;    DNA methylation;    Growth restriction;    Twin-twin transfusion syndrome;   
Others  :  790770
DOI  :  10.1186/1868-7083-5-18
 received in 2013-06-18, accepted in 2013-09-03,  发布年份 2013
PDF
【 摘 要 】

Background

Epigenetic mechanisms are thought to be critical in mediating the role of the intrauterine environment on lifelong health and disease. Twin-twin transfusion syndrome (TTTS) is a rare condition wherein fetuses share the placenta and develop vascular anastomoses, which allow blood to flow between the fetuses. The unequal flow results in reciprocal hypo- and hypervolemia in the affected twins, striking growth differences and physiologic adaptations in response to this significant stressor. The donor twin in the TTTS syndrome can be profoundly growth restricted and there is likely a nutritional imbalance between the twins. The consequences of TTTS on fetal programming are unknown. This condition can now be effectively treated through the use of fetal laparoscopic procedures, but the potential for lifelong morbidity related to this condition during development is apparent. As this condition and the resulting uteroplacental discordance can play a role in the epigenetic process, we sought to investigate the DNA methylation profiles of childhood survivors of TTTS (n = 14). We focused on differences in both global measures and genome-wide CpG specific DNA methylation between donor and recipient children in this pilot study in order to generate hypotheses for further research.

Results

We identified significant hypomethylation of the LINE1 repetitive element in the peripheral blood of donor children and subtle variation in the genome-wide profiles of CpG specific methylation most prominent at CpG sites which are targets for polycomb group repressive complexes.

Conclusions

These preliminary results suggest that coordinated epigenetic alterations result from the intrauterine environment experienced by infants with TTTS and may, at least in part, be responsible for downstream health conditions experienced by individuals surviving this condition.

【 授权许可】

   
2013 Marsit et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705003559660.pdf 852KB PDF download
Figure 4. 47KB Image download
Figure 3. 100KB Image download
Figure 2. 47KB Image download
Figure 1. 48KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Barker DJ, Osmond C: Low birth weight and hypertension. BMJ 1988, 297:134-135.
  • [2]Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ: Weight in infancy and death from ischaemic heart disease. Lancet 1989, 2:577-580.
  • [3]Barker D: Babies and Health in Later Life. Edinburgh: Churchhill Livingstone; 1998.
  • [4]Jaenisch R: DNA methylation and imprinting: why bother? Trends Genet 1997, 13:323-329.
  • [5]Razin A, Shemer R: DNA methylation in early development. Hum Mol Genet 1995, 4:1751-1755.
  • [6]Monk M, Boubelik M, Lehnert S: Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 1987, 99:371-382.
  • [7]Banister CE, Koestler DC, Maccani MA, Padbury JF, Houseman EA, Marsit CJ: Infant growth restriction is associated with distinct patterns of DNA methylation in human placentas. Epigenetics 2011, 6:920-927.
  • [8]Filiberto AC, Maccani MA, Koestler D, Wilhelm-Benartzi C, Avissar-Whiting M, Banister CE, Gagne LA, Marsit CJ: Birthweight is associated with DNA promoter methylation of the glucocorticoid receptor in human placenta. Epigenetics 2011, 6:566-572.
  • [9]Gordon L, Joo JE, Powell JE, Ollikainen M, Novakovic B, Li X, Andronikos R, Cruickshank MN, Conneely KN, Smith AK, Alisch RS, Morley R, Visscher PM, Craig JM, Saffery R: Neonatal DNA methylation profile in human twins is specified by a complex interplay between intrauterine environmental and genetic factors, subject to tissue-specific influence. Genome Res 2012, 22:1395-1406.
  • [10]Martin N, Boomsma D, Machin G: A twin-pronged attack on complex traits. Nat Genet 1997, 17:387-392.
  • [11]Tan Q, Christiansen L, Thomassen M, Kruse TA, Christensen K: Twins for epigenetic studies of human aging and development. Ageing Res Rev 2013, 12:182-187.
  • [12]Bell JT, Saffery R: The value of twins in epigenetic epidemiology. Int J Epidemiol 2012, 41:140-150.
  • [13]Talens RP, Christensen K, Putter H, Willemsen G, Christiansen L, Kremer D, Suchiman HE, Slagboom PE, Boomsma DI, Heijmans BT: Epigenetic variation during the adult lifespan: cross-sectional and longitudinal data on monozygotic twin pairs. Aging Cell 2012, 11:694-703.
  • [14]Bell JT, Tsai PC, Yang TP, Pidsley R, Nisbet J, Glass D, Mangino M, Zhai G, Zhang F, Valdes A, Shin SY, Dempster EL, Murray RM, Grundberg E, Hedman AK, Nica A, Small KS, Dermitzakis ET, McCarthy MI, Mill J, Spector TD, Deloukas P, MuTHER Consortium: Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLoS Genet 2012, 8:e1002629.
  • [15]Gervin K, Vigeland MD, Mattingsdal M, Hammero M, Nygard H, Olsen AO, Brandt I, Harris JR, Undlien DE, Lyle R: DNA methylation and gene expression changes in monozygotic twins discordant for psoriasis: identification of epigenetically dysregulated genes. PLoS Genet 2012, 8:e1002454.
  • [16]Zhao J, Goldberg J, Bremner JD, Vaccarino V: Global DNA methylation is associated with insulin resistance: a monozygotic twin study. Diabetes 2012, 61:542-546.
  • [17]Dempster EL, Pidsley R, Schalkwyk LC, Owens S, Georgiades A, Kane F, Kalidindi S, Picchioni M, Kravariti E, Toulopoulou T, Murray RM, Mill J: Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Hum Mol Genet 2011, 20:4786-4796.
  • [18]Denbow ML, Cox P, Taylor M, Hammal DM, Fisk NM: Placental angioarchitecture in monochorionic twin pregnancies: relationship to fetal growth, fetofetal transfusion syndrome, and pregnancy outcome. Am J Obstet Gynecol 2000, 182:417-426.
  • [19]De Paepe ME, Shapiro S, Greco D, Luks VL, Abellar RG, Luks CH, Luks FI: Placental markers of twin-to-twin transfusion syndrome in diamniotic-monochorionic twins: a morphometric analysis of deep artery-to-vein anastomoses. Placenta 2010, 31:269-276.
  • [20]De Lia JE: Surgery of the placenta and umbilical cord. Clin Obstet Gynecol 1996, 39:607-625.
  • [21]Bebbington M: Twin-to-twin transfusion syndrome: current understanding of pathophysiology, in-utero therapy and impact for future development. Semin Fetal Neonatal Med 2010, 15:15-20.
  • [22]Quintero RA, Dickinson JE, Morales WJ, Bornick PW, Bermudez C, Cincotta R, Chan FY, Allen MH: Stage-based treatment of twin-twin transfusion syndrome. Am J Obstet Gynecol 2003, 188:1333-1340.
  • [23]Senat MV, Deprest J, Boulvain M, Paupe A, Winer N, Ville Y: Endoscopic laser surgery versus serial amnioreduction for severe twin-to-twin transfusion syndrome. N Engl J Med 2004, 351:136-144.
  • [24]Luks FI, Carr SR, Muratore CS, O’Brien BM, Tracy TF: The pediatric surgeons’ contribution to in utero treatment of twin-to-twin transfusion syndrome. Ann Surg 2009, 250:456-462.
  • [25]Ahmed S, Luks FI, O’Brien BM, Muratore CS, Carr SR: Influence of experience, case load, and stage distribution on outcome of endoscopic laser surgery for TTTS–a review. Prenat Diagn 2010, 30:314-319.
  • [26]Chmait RH, Korst LM, Bornick PW, Allen MH, Quintero RA: Fetal growth after laser therapy for twin-twin transfusion syndrome. Am J Obstet Gynecol 2008, 199:41-46.
  • [27]De Paepe ME, Stopa E, Huang C, Hansen K, Luks FI: Renal tubular apoptosis in twin-to-twin transfusion syndrome. Pediatr Dev Pathol 2003, 6:215-225.
  • [28]De Paepe ME, Burke S, Luks FI, Pinar H, Singer DB: Demonstration of placental vascular anatomy in monochorionic twin gestations. Pediatr Dev Pathol 2002, 5:37-44.
  • [29]Habli M, Lim FY, Crombleholme T: Twin-to-twin transfusion syndrome: a comprehensive update. Clin Perinatol 2009, 36:391-416. x
  • [30]van Klink JM, Koopman HM, Oepkes D, Walther FJ, Lopriore E: Long-term neurodevelopmental outcome in monochorionic twins after fetal therapy. Early Hum Dev 2011, 87:601-606.
  • [31]Ortibus E, Lopriore E, Deprest J, Vandenbussche FP, Walther FJ, Diemert A, Hecher K, Lagae L, De Cock P, Lewi PJ, Lewi L: The pregnancy and long-term neurodevelopmental outcome of monochorionic diamniotic twin gestations: a multicenter prospective cohort study from the first trimester onward. Am J Obstet Gynecol 2009, 200:e491-e498.
  • [32]Kowitt B, Tucker R, Watson-Smith D, Muratore CS, O’Brien BM, Vohr BR, Carr SR, Luks FI: Long-term morbidity after fetal endoscopic surgery for severe twin-to-twin transfusion syndrome. J Pediatr Surg 2012, 47:51-56.
  • [33]Maschke C, Diemert A, Hecher K, Bartmann P: Long-term outcome after intrauterine laser treatment for twin-twin transfusion syndrome. Prenat Diagn 2011, 31:647-653.
  • [34]Salomon LJ, Ortqvist L, Aegerter P, Bussieres L, Staracci S, Stirnemann JJ, Essaoui M, Bernard JP, Ville Y: Long-term developmental follow-up of infants who participated in a randomized clinical trial of amniocentesis vs laser photocoagulation for the treatment of twin-to-twin transfusion syndrome. Am J Obstet Gynecol 2010, 203:e441-e447.
  • [35]Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL, Nelson HH, Karagas MR, Padbury JF, Bueno R, Sugarbaker DJ, Yeh RF, Wiencke JK, Kelsey KT: Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet 2009, 5:e1000602.
  • [36]Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, Chevalier B, Johnstone SE, Cole MF, Isono K, Koseki H, Fuchikami T, Abe K, Murray HL, Zucker JP, Yuan B, Bell GW, Herbolsheimer E, Hannett NM, Sun K, Odom DT, Otte AP, Volkert TL, Bartel DP, Melton DA, Gifford DK, Jaenisch R, Young RA: Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 2006, 125:301-313.
  • [37]Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J, Eden E, Yakhini Z, Ben-Shushan E, Reubinoff BE, Bergman Y, Simon I, Cedar H: Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 2007, 39:232-236.
  • [38]Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, Wiencke JK, Kelsey KT: DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 2012, 13:86. BioMed Central Full Text
  • [39]Koestler DC, Marsit CJ, Christensen BC, Accomando W, Langevin SM, Houseman EA, Nelson HH, Karagas MR, Wiencke JK, Kelsey KT: Peripheral blood immune cell methylation profiles are associated with nonhematopoietic cancers. Cancer Epidemiol Biomarkers Prev 2012, 21:1293-1302.
  • [40]Zhang FF, Santella RM, Wolff M, Kappil MA, Markowitz SB, Morabia A: White blood cell global methylation and IL-6 promoter methylation in association with diet and lifestyle risk factors in a cancer-free population. Epigenetics 2012, 7:606-614.
  • [41]Boeke CE, Baccarelli A, Kleinman KP, Burris HH, Litonjua AA, Rifas-Shiman SL, Tarantini L, Gillman M: Gestational intake of methyl donors and global LINE-1 DNA methylation in maternal and cord blood: prospective results from a folate-replete population. Epigenetics 2012, 7:253-260.
  • [42]Michels KB, Harris HR, Barault L: Birthweight, maternal weight trajectories and global DNA methylation of LINE-1 repetitive elements. PLoS One 2011, 6:e25254.
  • [43]Nelson HH, Marsit CJ, Kelsey KT: Global methylation in exposure biology and translational medical science. Environ Health Perspect 2011, 119:1528-1533.
  • [44]Thiede C, Prange-Krex G, Freiberg-Richter J, Bornhauser M, Ehninger G: Buccal swabs but not mouthwash samples can be used to obtain pretransplant DNA fingerprints from recipients of allogeneic bone marrow transplants. Bone Marrow Transplant 2000, 25:575-577.
  • [45]Lal G, Bromberg JS: Epigenetic mechanisms of regulation of Foxp3 expression. Blood 2009, 114:3727-3735.
  • [46]Kirmizis A, Bartley SM, Kuzmichev A, Margueron R, Reinberg D, Green R, Farnham PJ: Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev 2004, 18:1592-1605.
  • [47]Simon JA, Kingston RE: Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol 2009, 10:697-708.
  • [48]Easwaran H, Johnstone SE, Van Neste L, Ohm J, Mosbruger T, Wang Q, Aryee MJ, Joyce P, Ahuja N, Weisenberger D, Collisson E, Zhu J, Yegnasubramanian S, Matsui W, Baylin SB: A DNA hypermethylation module for the stem/progenitor cell signature of cancer. Genome Res 2012, 22:837-849.
  • [49]Wilhelm-Benartzi CS, Houseman EA, Maccani MA, Poage GM, Koestler DC, Langevin SM, Gagne LA, Banister CE, Padbury JF, Marsit CJ: In utero exposures, infant growth, and DNA methylation of repetitive elements and developmentally related genes in human placenta. Environ Health Perspect 2012, 120:296-302.
  • [50]Poage GM, Houseman EA, Christensen BC, Butler RA, Avissar-Whiting M, McClean M, McClean MD, Waterboer T, Pawlita M, Marsit CJ, Kelsey K: Global hypomethylation identifies loci targeted for hypermethylation in head and neck cancer. Clin Cancer Res 2011, 17:3579-3589.
  • [51]Poage GM, Christensen BC, Houseman EA, McClean MD, Wiencke JK, Posner MR, Clark JR, Nelson HH, Marsit CJ, Kelsey KT: Genetic and epigenetic somatic alterations in head and neck squamous cell carcinomas are globally coordinated but not locally targeted. PLoS One 2010, 5:e9651.
  • [52]Christensen BC, Kelsey KT, Zheng S, Houseman EA, Marsit CJ, Wrensch MR, Wiemels JL, Nelson HH, Karagas MR, Kushi LH, Kwan ML, Wiencke JK: Breast cancer DNA methylation profiles are associated with tumor size and alcohol and folate intake. PLoS Genet 2010, 6:e1001043.
  • [53]Marsit CJ, Houseman EA, Christensen BC, Gagne L, Wrensch MR, Nelson HH, Wiemels J, Zheng S, Wiencke JK, Andrew AS, Schned AR, Karagas MR, Kelsey KT: Identification of methylated genes associated with aggressive bladder cancer. PLoS One 2010, 5:e12334.
  • [54]Wolff EM, Chihara Y, Pan F, Weisenberger DJ, Siegmund KD, Sugano K, Kawashima K, Laird PW, Jones PA, Liang G: Unique DNA methylation patterns distinguish noninvasive and invasive urothelial cancers and establish an epigenetic field defect in premalignant tissue. Cancer Res 2010, 70:8169-8178.
  • [55]Lin Z, Hegarty J, Cappel J, Yu W, Chen X, Faber P, Wang Y, Kelly A, Poritz L, Peterson B, Schreiber S, Fan JB, Koltun WA: Identification of disease-associated DNA methylation in intestinal tissues from patients with inflammatory bowel disease. Clin Genet 2011, 80:59-67.
  • [56]Ang PW, Loh M, Liem N, Lim PL, Grieu F, Vaithilingam A, Platell C, Yong WP, Iacopetta B, Soong R: Comprehensive profiling of DNA methylation in colorectal cancer reveals subgroups with distinct clinicopathological and molecular features. BMC Cancer 2010, 10:227. BioMed Central Full Text
  • [57]Du P, Zhang X, Huang CC, Jafari N, Kibbe WA, Hou L, Lin SM: Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics 2010, 11:587. BioMed Central Full Text
  文献评价指标  
  下载次数:20次 浏览次数:25次