期刊论文详细信息
EvoDevo
Evolution of the Pax-Six-Eya-Dach network: the calcisponge case study
Maja Adamska1  Sven Leininger2  Sofia AV Fortunato3 
[1] Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, Bergen 5008, Norway;Current address: Institute of Marine Research, Nordnesgaten 50, Bergen 5005, Norway;Department of Biology, University of Bergen, Thormøhlensgt. 55, Bergen 5008, Norway
关键词: Sensory cells;    Six;    Pax;    Eyes absent;    Sycon;    Calcisponges;   
Others  :  800851
DOI  :  10.1186/2041-9139-5-23
 received in 2014-03-10, accepted in 2014-05-15,  发布年份 2014
PDF
【 摘 要 】

Background

The Pax-Six-Eya-Dach network (PSEDN) is involved in a variety of developmental processes, including well documented roles in determination of sensory organs and morphogenesis in bilaterian animals. Expression of PSEDN components in cnidarians is consistent with function in sensory organ development. Recent work in demosponges demonstrated the presence of single homologs of Pax and Six genes, and their possible involvement in morphogenesis, but the absence of the remaining network components. Calcisponges are evolutionarily distant from demosponges, and the developmental toolkits of these two lineages differ significantly. We used an emerging model system, Sycon ciliatum, to identify components of the PSEDN and study their expression during embryonic and postembryonic development.

Results

We identified two Pax, three Six and one Eya genes in calcisponges, a situation strikingly different than in the previously studied demosponges. One of the calcisponge Pax genes can be identified as PaxB, while the second Pax gene has no clear affiliation. The three calcisponge Six genes could not be confidently classified within any known family of Six genes. Expression analysis in adult S. ciliatum demonstrated that representatives of Pax, Six and Eya are expressed in patterns consistent with roles in morphogenesis of the choanocyte chambers. Distinct paralogues of Pax and Six genes were expressed early in the development of the putative larval sensory cells, the cruciform cells. While lack of known photo pigments in calcisponge genomes precludes formal assignment of function to the cruciform cells, we also show that they express additional eumetazoan genes involved in specification of sensory and neuronal cells: Elav and Msi.

Conclusions

Our results indicate that the role of a Pax-Six-Eya network in morphogenesis likely predates the animal divergence. In addition, Pax and Six, as well as Elav and Msi are expressed during differentiation of cruciform cells, which are good candidates for being sensory cells of the calcaronean sponge larvae.

【 授权许可】

   
2014 Fortunato et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708000339585.pdf 3066KB PDF download
Figure 5. 218KB Image download
Figure 4. 189KB Image download
Figure 3. 176KB Image download
Figure 2. 175KB Image download
Figure 1. 148KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Donner A, Maas R: Conservation and non-conservation of genetic pathways in eye specification. Int J Dev Biol 2004, 48:743-753.
  • [2]Friedrich M: Ancient mechanisms of visual sense organ development based on comparison of the gene networks controlling larval eye, ocellus, and compound eye specification in drosophila. Arthropod Struct Dev 2006, 35:357-378.
  • [3]Silver S, Rebay I: Signaling circuitries in development: insights from the retinal determination gene network. Dev Suppl 2005, 132:3-13.
  • [4]Kozmik Z, Holland N, Kreslova J, Oliveri D, Schubert M, Jonasova K, Holland L, Pestarino M, Benes V, Candiani S: Pax-Six-Eya-Dach network during amphioxus development: conservation in vitro but context specificity in vivo. Dev Biol 2007, 306:143-159.
  • [5]Bassham S, Postlethwait JH: The evolutionary history of placodes: a molecular genetic investigation of the larvacean urochordate Oikopleura dioica. Development 2005, 132:4259-4272.
  • [6]Wagner G: The developmental genetics of homology. Nat Rev Genet 2007, 8:473-479.
  • [7]Matus D, Pang K, Daly M, Martindale M: Expression of Pax gene family members in the anthozoan cnidarian, Nematostella vectensis. Evol Dev 2007, 9:25-38.
  • [8]Suga H, Tschopp P, Graziussi DF, Stierwald M, Schmid V, Gehring WJ: Flexibly deployed Pax genes in eye development at the early evolution of animals demonstrated by studies on a hydrozoan jellyfish. Proc Natl Acad Sci U S A 2010, 107:14263-14268.
  • [9]Kozmik Z, Daube M, Frei E, Norman B, Kos L, Dishaw L, Noll M, Piatigorsky J: Role of Pax genes in eye evolution: a cnidarian PaxB gene uniting Pax2 and Pax6 functions. Dev Cell 2003, 5:773-785.
  • [10]Kumar J: The sine oculis homeobox (SIX) family of transcription factors as regulators of development and disease. Cell Mol Life Sci 2009, 66:565-583.
  • [11]Kozmik Z: The role of Pax genes in eye evolution. Brain Res Bull 2008, 75:335-339.
  • [12]Kozmik Z: Pax genes in eye development and evolution. Curr Opin Genet Dev 2005, 15:430-438.
  • [13]Graziussi DF, Suga H, Schmid V, Gehring WJ: The “Eyes absent” (eya) gene in the eye-bearing hydrozoan jellyfish Cladonema radiatum: conservation of the retinal determination network. J Exp Zool B Mol Dev Evol 2012, 318:257-267.
  • [14]Galliot B, Quiquand M, Ghila L, De Rosa R, Miljkovic-Licina M, Chera S: Origins of neurogenesis, a cnidarian view. Dev Biol 2009, 332:2-24.
  • [15]Sinigaglia C, Busengdal H, Leclère L, Technau U, Rentzsch F: The bilaterian head patterning gene six3/6 controls aboral domain development in a cnidarian. PLoS Biol 2013, 11(2):e1001488.
  • [16]Hill A, Boll W, Ries C, Warner L, Osswalt M, Hill M, Noll M: Origin of Pax and Six gene families in sponges: Single PaxB and Six1/2 orthologs in Chalinula loosanoffi. Dev Biol 2010, 343:106-123.
  • [17]Rivera A, Winters I, Rued A, Ding S, Posfai D, Cieniewicz B, Cameron K, Gentile L, Hill A: The evolution and function of the Pax/Six regulatory network in sponges. Evol Dev 2013, 15:186-196.
  • [18]Maldonado M: The ecology of the sponge larva. Can J Zool 2006, 84:175-194.
  • [19]Ludeman D, Farrar N, Riesgo A, Paps J, Leys S: Evolutionary origins of sensation in metazoans: functional evidence for a new sensory organ in sponges. BMC Evol Biol 2014, 14:3.
  • [20]Leys S, Cronin T, Degnan B, Marshall J: Spectral sensitivity in a sponge larva. J Comp Physiol Neuroethol Sens Neural Behav Physiol 2002, 188:199-202.
  • [21]Feuda R, Hamilton S, McInerney J, Pisani D: Metazoan opsin evolution reveals a simple route to animal vision. Proc Natl Acad Sci U S A 2012, 109:18868-18872.
  • [22]Müller WE, Wang X, Schröder HC, Korzhev M, Grebenjuk VA, Markl JS, Jochum KP, Pisignano D, Wiens M: A cryptochrome-based photosensory system in the siliceous sponge Suberites domuncula (Demospongiae). FEBS J 2010, 277:1182-1201.
  • [23]Rivera A, Ozturk N, Fahey B, Plachetzki D, Degnan B, Sancar A, Oakley T: Blue-light-receptive cryptochrome is expressed in a sponge eye lacking neurons and opsin. J Exp Biol 2012, 215:1278-1286.
  • [24]Fortunato S, Adamski M, Bergum B, Guder C, Jordal S, Leininger S, Zwafink C, Rapp HT, Adamska M: Genome-wide analysis of the sox family in the calcareous sponge Sycon ciliatum: multiple genes with unique expression patterns. EvoDevo 2012, 3:14.
  • [25]Leininger S, Adamski M, Bergum B, Guder C, Liu J, Laplante M, Bråte J, Hoffman NF, Fortunato S, Jordal S, Rapp HT, Adamska M: Developmental gene expression provides clues to relationships between sponge and eumetazoan body plans. Nat Commun 2014, 5:3905.
  • [26]Riesgo A, Farrar N, Windsor PJ, Giribet G, Leys SP: The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges. Mol Biol Evol 2014, 31:1102-1120.
  • [27]Sebé-Pedrós A, Ariza-Cosano A, Weirauch M, Leininger S, Yang A, Torruella G, Adamski M, Adamska M, Hughes T, Gómez-Skarmeta J, Ruiz-Trillo I: Early evolution of the T-box transcription factor family. Proc Natl Acad Sci U S A 2013, 110:16050-16055.
  • [28]Maas O: Die Weiterentwicklung der Syconen nach der metamorphose. Zeutsch wiss Zool 1900, 67:215-240.
  • [29]Ereskovsky AV: The Comparative Embryology of Sponges. Dordrecht Heidelberg London New York: Springer; 2010.
  • [30]Maldonado M, Bergquist P: Atlas of Marine Invertebrate Larvae. San Diego, CA: Academic Press; 2002.
  • [31]Manuel M: Early evolution of symmetry and polarity in metazoan body plans. C R Biol 2009, 332:184-209.
  • [32]Amano S, Hori I: Metamorphosis of calcareous sponges. 2. Cell rearrangement and differentiation in metamorphosis. Invert Reprod Dev 1993, 24:13-26.
  • [33]Tuzet O: Éponges calcaires. In Traité de Zoologie Anatomie, Systématique, Biologie Spongiaires. Edited by Grassé P-P. Paris: Masson et Cie; 1973:27-132.
  • [34]Phochanukul N, Russell S: No backbone but lots of Sox: invertebrate Sox genes. Int J Biochem Cell Biol 2010, 42:453-464.
  • [35]Watanabe H, Fujisawa T, Holstein TW: Cnidarians and the evolutionary origin of the nervous system. Dev Growth Differ 2009, 51:167-183.
  • [36]Jager M, Queinnec E, Le Guyader H, Manuel M: Multiple Sox genes are expressed in stem cells or in differentiating neuro-sensory cells in the hydrozoan Clytia hemisphaerica. EvoDevo 2011, 2:12.
  • [37]Kanska J, Frank U: New roles for Nanos in neural cell fate determination revealed by studies in a cnidarian. J Cell Sci 2013, 126:3192-3203.
  • [38]Grigoryan T, Wend P, Klaus A, Birchmeier W: Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev 2008, 22:2308-2341.
  • [39]Hegarty S, O'Keeffe G, Sullivan A: BMP-Smad 1/5/8 signalling in the development of the nervous system. Prog Neurobiol 2013, 109:28-41.
  • [40]Abascal F, Zardoya R, Posada D: ProtTest: selection of best-fit models of protein evolution. Bioinformatics 2005, 21:2104-2105.
  • [41]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19:1572-1574.
  • [42]Rambaut A, Drummond AJ: Tracer v1.5. 2009. http://beast.bio.ed.ac.uk/software/tracer/
  • [43]Rambaut A: Figtree v1.4.0. 2012. http://tree.bio.ed.ac.uk/software/figtree/
  • [44]Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010, 59:307-321.
  • [45]Ryan J, Burton P, Mazza M, Kwong G, Mullikin J, Finnerty J: The cnidarian-bilaterian ancestor possessed at least 56 homeoboxes: evidence from the starlet sea anemone. Nematostella vectensis. Genome Biol 2006, 7:R64.
  • [46]Larroux C, Luke G, Koopman P, Rokhsar D, Shimeld S, Degnan B: Genesis and expansion of metazoan transcription factor gene classes. Mol Biol Evol 2008, 25:980-996.
  • [47]Hoshiyama D, Iwabe N, Miyata T: Evolution of the gene families forming the Pax/Six regulatory network: isolation of genes from primitive animals and molecular phylogenetic analyses. FEBS Lett 2007, 581:1639-1643.
  • [48]Breitling R, Gerber JK: Origin of the paired domain. Dev Genes Evol 2000, 210:644-650.
  • [49]Takatori N, Butts T, Candiani S, Pestarino M, Ferrier D, Saiga H, Holland P: Comprehensive survey and classification of homeobox genes in the genome of amphioxus, Branchiostoma floridae. Dev Genes Evol 2008, 218:579-590.
  • [50]Ryan J, Pang K, Program NCS, Mullikin J, Martindale M, Baxevanis A: The homeodomain complement of the ctenophore Mnemiopsis leidyi suggests that Ctenophora and Porifera diverged prior to the ParaHoxozoa. EvoDevo 2010, 1:9.
  • [51]Franzen W: Oogenesis and larval development of Scypha Ciliata (Porifera, Calcarea). Zoomorphology 1988, 107:349-357.
  • [52]Rebay I, Silver S, Tootle T: New vision from Eyes absent: transcription factors as enzymes. Trends Genet 2005, 21:163-171.
  • [53]Schlosser G, Wagner GP: Modularity in development and evolution. Chicago: University of Chicago Press; 2004.
  • [54]Stierwald M, Yanze N, Bamert R, Kammermeier L, Schmid V: The Sine oculis/Six class family of homeobox genes in jellyfish with and without eyes: development and eye regeneration. Dev Biol 2004, 274:70-81.
  • [55]Elliot GR, Macdonald TA, Leys SP: Sponge larval phototaxis: a comparative study. Bollettino dei Musei e degli Istituti Biologici dell’Universita di Genova 2004, 68:291-300.
  文献评价指标  
  下载次数:23次 浏览次数:11次