期刊论文详细信息
Head & Face Medicine
Epidermal growth factor enhances osteogenic differentiation of dental pulp stem cells in vitro
Myriam Angélica De la Garza-Ramos4  Marcela Márquez-M1  Carlos Eduardo Medina-De la Garza5  Andrés Mendiola-Jiménez5  Ricardo Emmanuel Romero-Zavaleta2  Ada Pricila López-Lozano4  Yolanda Gutiérrez-Puente3  Casiano Del Angel-Mosqueda4 
[1] Department of Oncology-Pathology, CCK, Karolinska Institutet, Stockholm, Sweden;Unidad de Odontología Integral y Especialidades, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Nuevo León, Monterrey, México;Departamento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México;Facultad de Odontología, Universidad Autónoma de Nuevo León, Nuevo León, Monterrey, México;Facultad de Medicina, Universidad Autónoma de Nuevo León, Nuevo León, Monterrey, México
关键词: Bone remodelling;    Bone mineralization;    Osteogenic differentiation;    Basic fibroblast growth factor;    Epidermal growth factor;    Dental pulp stem cells;   
Others  :  1224588
DOI  :  10.1186/s13005-015-0086-5
 received in 2015-04-17, accepted in 2015-08-17,  发布年份 2015
PDF
【 摘 要 】

Introduction

Epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) play an important role in extracellular matrix mineralization, a complex process required for proper bone regeneration, one of the biggest challenges in dentistry. The purpose of this study was to evaluate the osteogenic potential of EGF and bFGF on dental pulp stem cells (DPSCs).

Material and methods

Human DPSCs were isolated using CD105 magnetic microbeads and characterized by flow cytometry. To induce osteoblast differentiation, the cells were cultured in osteogenic medium supplemented with EGF or bFGF at a low concentration. Cell morphology and expression of CD146 and CD10 surface markers were analyzed using fluorescence microscopy. To measure mineralization, an alizarin red S assay was performed and typical markers of osteoblastic phenotype were evaluated by RT-PCR.

Results

EGF treatment induced morphological changes and suppression of CD146 and CD10 markers. Additionally, the cells were capable of producing calcium deposits and increasing the mRNA expression to alkaline phosphatase (ALP) and osteocalcin (OCN) in relation to control groups (p < 0.001). However, bFGF treatment showed an inhibitory effect.

Conclusion

These data suggests that DPSCs in combination with EGF could be an effective stem cell-based therapy for bone tissue engineering applications in periodontics and oral implantology.

【 授权许可】

   
2015 Del Angel-Mosqueda et al.

【 预 览 】
附件列表
Files Size Format View
20150911101008945.pdf 1962KB PDF download
Fig. 3. 83KB Image download
Fig. 2. 114KB Image download
Fig. 1. 111KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

【 参考文献 】
  • [1]Bianco P, Robey PG. Stem cells in tissue engineering. Nature. 2001; 414:118-121.
  • [2]Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al.. Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284:143-147.
  • [3]Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000; 97:13625-13630.
  • [4]Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A et al.. Stem cell properties of human dental pulp stem cells. J Dent Res. 2002; 81:531-5.
  • [5]Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG et al.. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A. 2003; 100:5807-12.
  • [6]Riccio M, Resca E, Maraldi T, Pisciotta A, Ferrari A, Bruzzesi G et al.. Human dental pulp stem cells produce mineralized matrix in 2D and 3D cultures. Eur J Histochem. 2010; 54:e46.
  • [7]Langenbach F, Handschel J. Effects of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res. Ther. 2013; 4:117. BioMed Central Full Text
  • [8]Yu J, He H, Tang C, Zhang G, Li Y, Wang R et al.. Differentiation potential of STRO-1+ dental pulp stem cells changes during cell passaging. BMC Cell Biol. 2010; 11:32. BioMed Central Full Text
  • [9]Hoemann CD, El-Gabalawy H, McKee MD. In vitro osteogenesis assays: influence of the primary cell source on alkaline phosphatase activity and mineralization. Pathol Biol. 2009; 57:318-323.
  • [10]Huang Z, Nelson ER, Smith RL, Goodman SB. The sequential expression profiles of growth factors from osteoprogenitors [correction of osteroprogenitors] to osteoblasts in vitro. Tissue Eng. 2007; 13:2311-2320.
  • [11]Rodrigues M, Griffith L, Wells A. Growth factor regulation of proliferation and survival of multipotential stromal cells. Stem Cell Res Ther. 2010; 1:32. BioMed Central Full Text
  • [12]Carpenter G, Cohen S. Epidermal growth factor. J Biol Chem. 1990; 265:7709-12.
  • [13]Mroczkowski B, Reich M, Chen K, Bell GI, Cohen S. Recombinant human epidermal growth factor precursor is a glycosylated membrane protein with biological activity. Mol Cell Biol. 1989; 9:2771-8.
  • [14]Tamama K, Fan VH, Griffith LG, Blair HC, Wells A. Epidermal growth factor as a candidate for ex vivo expansion of bone marrow-derived mesenchymal stem cells. Stem Cells. 2006; 24:686-95.
  • [15]Tsutsumi S, Shimazu A, Miyazaki K, Pan H, Koike C, Yoshida E et al.. Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochem Biophys Res Commun. 2001; 288:413-9.
  • [16]Ito T, Sawada R, Fujiwara Y, Seyama Y, Tsuchiya T. FGF-2 suppresses cellular senescence of human mesenchymal stem cells by down-regulation of TGF-beta 2. Biochem Biophys Res Commun. 2007; 359:108-14.
  • [17]Qian J, Jiayuan W, Wenkai J, Peina W, Ansheng Z, Shukai S et al.. Basic fibroblastic growth factor affects the osteogenic differentiation of dental pulp stem cells in a treatment-dependent manner. Int Endod J. 2014; 48(7):690-700.
  • [18]Osathanon T, Nowwarote N, Pavasant P. Basic fibroblast growth factor inhibits mineralization but induces neuronal differentiation by human dental pulp stem cells through a FGFR and PLCγ signaling pathway. J Cell Biochem. 2011; 112:1807-16.
  • [19]Li B, Qu C, Chen C, Liu Y, Akiyama K, Yang R et al.. Basic fibroblast growth factor inhibits osteogenic differentiation of stem cells from human exfoliated deciduous teeth through ERK signaling. Oral Dis. 2012; 18:285-92.
  • [20]Osathanon T, Nowwarote N, Manokawinchoke J, Pavasant P. bFGF and JAGGED1 regulate alkaline phosphatase expression and mineralization in dental tissue-derived mesenchymal stem cells. J Cell Biochem. 2013; 114:2551-61.
  • [21]Fan VH, Tamama K, Au A, Littrell R, Richardson LB, Wright JW et al.. Tethered epidermal growth factor provides a survival advantage to mesenchymal stem cells. Stem Cells. 2007; 25:1241-51.
  • [22]Harris RC, Chung E, Coffey RJ. EGF receptor ligands. Exp Cell Res. 2003; 284:2-13.
  • [23]Schmidt MH, Furnari FB, Cavenee WK, Bogler O. Epidermal growth factor receptor signaling intensity determines intracellular protein interactions, ubiquitination, and internalization. Proc Natl Acad Sci U S A. 2003; 100:6505-10.
  • [24]Kratchmarova I, Blagoev B, Haack-Sorensen M, Kassem M, Mann M. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science. 2005; 308:1472-7.
  • [25]Platt MO, Roman AJ, Wells A, Lauffenburger DA, Griffith LG. Sustained epidermal growth factor receptor levels and activation by tethered ligand binding enhances osteogenic differentiation of multi-potent marrow stromal cells. J Cell Physiol. 2009; 221:306-17.
  • [26]Stanford CM, Jacobson PA, Eanes ED, Lembke LA, Midura RJ. Rapidly forming apatitic mineral in an osteoblastic cell line (UMR 106–01 BSP). J Biol Chem. 1995; 270:9420-8.
  • [27]Sambrook J, Maccallum P, Russel D. Molecular Cloning: A Laboratory Manual. 3rd ed. Cold Spring Harbor Press, Woodbury, NY; 2001.
  • [28]Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science. 2009; 324:1673-7.
  • [29]Suzuki A, Ghayor C, Guicheux J, Magne D, Quillard S, Kakita A et al.. Enhanced expression of the inorganic phosphate transporter Pit-1 is involved in BMP-2-induced matrix mineralization in osteoblast-like cells. J Bone Miner Res. 2006; 21:674-83.
  • [30]Luppen CA, Smith E, Spevak L, Boskey AL, Frenkel B. Bone morphogenetic protein-2 restores mineralization in glucocorticoid-inhibited MC3T3-E1 osteoblast cultures. J Bone Miner Res. 2003; 18:1186-97.
  • [31]Rawadi G, Vayssière B, Dunn F, Baron R, Roman-Roman S. BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. J Bone Miner Res. 2003; 18:1842-53.
  • [32]Bonnamain V, Thinard R, Sergent-Tanguy S, Huet P, Bienvenu G, Naveilhan P et al.. Human dental pulp stem cells cultured in serum-free supplemented medium. Front Physiol. 2013; 4:357.
  • [33]Tamama K, Kawasaki H, Wells A. Epidermal growth factor (EGF) treatment on multipotential stromal cells (MSCs). Possible enhancement of therapeutic potential of MSC. J Biomed Biotechnol. 2010; 2010:795385.
  • [34]Howard C, Murray PE, Namerow KN. Dental pulp stem cell migration. J Endod. 2010; 36:1963-6.
  • [35]Kim SM, Jung JU, Ryu JS, Jin JW, Yang HJ, Ko K et al.. Effects of gangliosides on the differentiation of human mesenchymal stem cells into osteoblasts by modulating epidermal growth factor receptors. Biochem Biophys Res Commun. 2008; 371:866-71.
  • [36]Huang CH, Tseng WY, Yao CC, Jeng JH, Young TH, Chen YJ. Glucosamine promotes osteogenic differentiation of dental pulp stem cells through modulating the level of the transforming growth factor-beta type I receptor. J Cell Physiol. 2010; 225:140-51.
  • [37]Feng X, Huang D, Lu X, Feng G, Xing J, Lu J et al.. Insulin-like growth factor 1 can promote proliferation and osteogenic differentiation of human dental pulp stem cells via mTOR pathway. Dev. Growth Differ. 2014; 56:615-24.
  • [38]Feng X, Feng G, Xing J, Shen B, Li L, Tan W et al.. TNF-α triggers osteogenic differentiation of human dental pulp stem cells via the NF-κB signalling pathway. Cell Biol Int. 2013; 37:1267-75.
  • [39]Teramatsu Y, Maeda H, Sugii H, Tomokiyo A, Hamano S, Wada N et al.. Expression and effects of epidermal growth factor on human periodontal ligament cells. Cell Tissue Res. 2014; 357:633-43.
  • [40]Devescovi V, Leonardi E, Ciapetti G, Cenni E. Growth factors in bone repair. Chir Organi Mov. 2008; 92:161-8.
  • [41]Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors. 2004; 22:233-41.
  • [42]Krampera M, Pasini A, Rigo A, Scupoli MT, Tecchio C, Malpeli G et al.. HB-EGF/HER-1 signaling in bone marrow mesenchymal stem cells: inducing cell expansion and reversibly preventing multilineage differentiation. Blood. 2005; 106:59-66.
  • [43]Hu F, Wang X, Liang G, Lv L, Zhu Y, Sun B et al.. Effects of epidermal growth factor and basic fibroblast growth factor on the proliferation and osteogenic and neural differentiation of adipose-derived stem cells. Cell Rep. 2013; 15:224-32.
  • [44]Matsuoka F, Takeuchi I, Agata H, Kagami H, Shiono H, Kiyota Y et al.. Morphology-based prediction of osteogenic differentiation potential of human mesenchymal stem cells. PLoS One. 2013; 8:e55082.
  • [45]Leischner U, Schierloh A, Zieglgansberger W, Dodt HU. Formalin-induced fluorescence reveals cell shape and morphology in biological tissue samples. PLoS One. 2010; 5:e10391.
  • [46]Nam S, Won JE, Kim CH, Kim HW. Odontogenic differentiation of human dental pulp stem cells stimulated by the calcium phosphate porous granules. J Tissue Eng. 2011; 2011:812547.
  • [47]Sun HL, Wu YR, Huang C, Wang JW, Fu DJ, Liu YC. The effect of SIRT6 on the odontoblastic potential of human dental pulp cells. J Endod. 2014; 40:393-8.
  • [48]Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al.. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8:315-7.
  • [49]Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol. 2001; 189:54-63.
  • [50]Vishwanath VR, Nadig RR, Nadig R, Prasanna JS, Karthik J, Pai VS. Differentiation of isolated and characterized human dental pulp stem cells and stem cells from human exfoliated deciduous teeth: An in vitro study. J Conserv Dent. 2013; 16:423-428.
  • [51]Mori G, Brunetti G, Oranger A, Carbone C, Ballini A, Lo Muzio L et al.. Dental pulp stem cells: osteogenic differentiation and gene expression. Ann N Y Acad Sci. 2011; 1237:47-52.
  • [52]Stucki U, Schmid J, Hämmerle CF, Lang NP. Temporal and local appearance of alkaline phosphatase activity in early stages of guided bone regeneration. A descriptive histochemical study in humans. Clin. Oral Implants Res. 2001; 12:121-7.
  • [53]Ling LE, Feng L, Liu HC, Wang DS, Shi ZP, Wang JC et al.. The effect of calcium phosphate composite scaffolds on the osteogenic differentiation of rabbit dental pulp stem cells. J Biomed Mater Res A. 2015; 103:1732-45.
  • [54]Shi X, Wang Y, Varshney RR, Ren L, Zhang F, Wang DA. In-vitro osteogenesis of synovium stem cells induced by controlled release of bisphosphate additives from microspherical mesoporous silica composite. Biomaterials. 2009; 30:3996-4005.
  • [55]McKee MD, Addison WN, Kaartinen MT. Hierarchies of extracellular matrix and mineral organization in bone of the craniofacial complex and skeleton. Cells Tissues Organs. 2005; 181:176-88.
  文献评价指标  
  下载次数:0次 浏览次数:3次