期刊论文详细信息
Journal of Neuroinflammation
Neuroprotective effects of bilobalide on cerebral ischemia and reperfusion injury are associated with inhibition of pro-inflammatory mediator production and down-regulation of JNK1/2 and p38 MAPK activation
Zhixian Mo1  Ken Kin Lam Yung2  Junkui Li1  Ju Peng1  Chaohua Luo1  Wei Liu1  Yi Liu1  Qiuxian Peng2  Jing Li1  Mingjin Jiang1 
[1] School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China;Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
关键词: pro-inflammatory mediators;    p-p38 MAPK;    p-JNK1/2;    p-ERK1/2;    cerebral ischemia and reperfusion;    bilobalide;   
Others  :  1150723
DOI  :  10.1186/s12974-014-0167-6
 received in 2014-06-18, accepted in 2014-09-13,  发布年份 2014
PDF
【 摘 要 】

Background

Mitogen-activated protein kinase (MAPK) signaling pathways are implicated in inflammatory and apoptotic processes of cerebral ischemia and reperfusion (I/R) injury. Hence, MAPK pathways represent a promising therapeutic target. Exploring the full potential of inhibitors of MAPK pathways is a useful therapeutic strategy for ischemic stroke. Bilobalide, a predominant sesquiterpene trilactone constituent of Ginkgo biloba leaves, has been shown to exert powerful neuroprotective properties, which are closely related to both anti-inflammatory and anti-apoptotic pathways. We investigated the neuroprotective roles of bilobalide in the models of middle cerebral artery occlusion and reperfusion (MCAO/R) and oxygen-glucose deprivation and reoxygenation (OGD/R) of cerebral I/R injury. Moreover, we attempted to confirm the hypothesis that its protection effect is via modulation of pro-inflammatory mediators and MAPK pathways.

Methods

Male Sprague-Dawley rats were subjected to MCAO for 2 h followed by reperfusion for 24 h. Bilobalide was administered intraperitoneally 60 min before induction of middle cerebral artery occlusion (MCAO). After reperfusion, neurological deficit scores, infarct volume, infarct weight, and brain edema were assessed. Ischemic penumbrae of the cerebral cortex were harvested to determine superoxide dismutase (SOD), malondialdehyde (MDA), nitric oxide, TNF-?, interleukin 1? (IL-1?), p-ERK1/2, p-JNK1/2, and p-p38 MAPK concentration. Similarly, the influence of bilobalide on the expression of nitric oxide, TNF-?, IL-1?, p-ERK1/2, p-JNK1/2, and p-p38 MAPK was also observed in an OGD/R in vitro model of I/R injury.

Results

Pretreatment with bilobalide (5, 10 mg/kg) significantly decreased neurological deficit scores, infarct volume, infarct weight, brain edema, and concentrations of MDA, nitric oxide, TNF-?, IL-1?, and increased SOD activity. Furthermore, bilobalide (5, 10 mg/kg) pretreatment significantly down-regulated both p-JNK1/2 and p-p38 MAPK expression, whereas they had no effect on p-ERK1/2 expression in the ischemic penumbra. Supporting these observations in vivo, pretreatment with bilobalide (50, 100 ?M) significantly down-regulated nitric oxide, TNF-?, IL-1?, p-JNK1/2, and p-p38 MAPK expression, but did not change p-ERK1/2 expression in rat cortical neurons after OGD/R injury.

Conclusions

These data indicate that the neuroprotective effects of bilobalide on cerebral I/R injury are associated with its inhibition of pro-inflammatory mediator production and down-regulation of JNK1/2 and p38 MAPK activation.

【 授权许可】

   
2014 Jiang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
Figure 4. 14KB Image download
Figure 9. 48KB Image download
Figure 8. 31KB Image download
Figure 7. 25KB Image download
Figure 6. 59KB Image download
20140726090423524.pdf 857KB PDF download
Figure 4. 32KB Image download
Figure 3. 20KB Image download
Figure 2. 68KB Image download
Figure 9. 112KB Image download
【 图 表 】

Figure 9.

Figure 2.

Figure 3.

Figure 4.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 4.

【 参考文献 】
  • [1]Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER 3rd, Moy CS, et al.: Heart disease and stroke statistics - 2014 update: a report from the American Heart Association. Circulation 2014, 129:e28-e292.
  • [2]Jauch EC, Saver JL, Adams HP Jr, Bruno A, Connors JJ, Demaerschalk BM, Khatri P, McMullan PW Jr, Qureshi AI, Rosenfield K, Scott PA, Summers DR, Wang DZ, Wintermark M, Yonas H: Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2013, 44:870-947.
  • [3]Eltzschig HK, Eckle T: Ischemia and reperfusion - from mechanism to translation. Nat Med 2011, 17:1391-1401.
  • [4]Iadecola C, Alexander M: Cerebral ischemia and inflammation. Curr Opin Neurol 2001, 14:89-94.
  • [5]Broughton BR, Reutens DC, Sobey CG: Apoptotic mechanisms after cerebral ischemia. Stroke 2009, 40:e331-e339.
  • [6]Doyle KP, Simon RP, Stenzel-Poore MP: Mechanisms of ischemic brain damage. Neuropharmacology 2008, 55:310-318.
  • [7]Sugino T, Nozaki K, Takagi Y, Hattori I, Hashimoto N, Moriguchi T, Nishida E: Activation of mitogen-activated protein kinases after transient forebrain ischemia in gerbil hippocampus. J Neurosci 2000, 20:4506-4514.
  • [8]Irving EA, Bamford M: Role of mitogen- and stress-activated kinases in ischemic injury. J Cereb Blood Flow Metab 2002, 22:631-647.
  • [9]Ferrer I, Friguls B, Dalfó E, Planas AM: Early modifications in the expression of mitogen-activated protein kinase (MAPK/ERK), stress-activated kinases SAPK/JNK and p38, and their phosphorylated substrates following focal cerebral ischemia. Acta Neuropathol 2003, 105:425-437.
  • [10]Kovalska M, Kovalska L, Pavlikova M, Janickova M, Mikuskova K, Adamkov M, Kaplan P, Tatarkova Z, Lehotsky J: Intracellular signaling MAPK pathway after cerebral ischemia-reperfusion injury. Neurochem Res 2012, 37:1568-1577.
  • [11]Kyriakis JM, Avruch J: Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev 2012, 92:689-737.
  • [12]Cargnello M, Roux PP: Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 2011, 75:50-83.
  • [13]Nozaki K, Nishimura M, Hashimoto N: Mitogen-activated protein kinases and cerebral ischemia. Mol Neurobiol 2001, 23:1-19.
  • [14]Krupinski J, Slevin M, Marti E, Catena E, Rubio F, Gaffney J: Time-course phosphorylation of the mitogen activated protein (MAP) kinase group of signalling proteins and related molecules following middle cerebral artery occlusion (MCAO) in rats. Neuropathol Appl Neurobiol 2003, 29:144-158.
  • [15]Piao CS, Che Y, Han PL, Lee JK: Delayed and differential induction of p38 MAPK isoforms in microglia and astrocytes in the brain after transient global ischemia. Brain Res Mol Brain Res 2002, 107:137-144.
  • [16]Vila N, Castillo J, Dávalos A, Chamorro A: Proinflammatory cytokines and early neurological worsening in ischemic stroke. Stroke 2000, 31:2325-2329.
  • [17]Wang CX, Shuaib A: Involvement of inflammatory cytokines in central nervous system injury. Prog Neurobiol 2002, 67:161-172.
  • [18]Barone FC, Irving EA, Ray AM, Lee JC, Kassis S, Kumar S, Badger AM, Legos JJ, Erhardt JA, Ohlstein EH, Hunter AJ, Harrison DC, Philpott K, Smith BR, Adams JL, Parsons AA: Inhibition of p38 mitogen-activated protein kinase provides neuroprotection in cerebral focal ischemia. Med Res Rev 2001, 21:129-145.
  • [19]Legos JJ, Erhardt JA, White RF, Lenhard SC, Chandra S, Parsons AA, Tuma RF, Barone FC: SB 239063, a novel p38 inhibitor, attenuates early neuronal injury following ischemia. Brain Res 2001, 892:70-77.
  • [20]Legos JJ, McLaughlin B, Skaper SD, Strijbos PJ, Parsons AA, Aizenman E, Herin GA, Barone FC, Erhardt JA: The selective p38 inhibitor SB-239063 protects primary neurons from mild to moderate excitotoxic injury. Eur J Pharmacol 2002, 447:37-42.
  • [21]Piao CS, Kim JB, Han PL, Lee JK: Administration of the p38 MAPK inhibitor SB203580 affords brain protection with a wide therapeutic window against focal ischemic insult. J Neurosci Res 2003, 73:537-544.
  • [22]Strassburger M, Braun H, Reymann KG: Anti-inflammatory treatment with the p38 mitogen-activated protein kinase inhibitor SB239063 is neuroprotective, decreases the number of activated microglia and facilitates neurogenesis in oxygen-glucose-deprived hippocampal slice cultures. Eur J Pharmacol 2008, 592:55-61.
  • [23]Benakis C, Bonny C, Hirt L: JNK inhibition and inflammation after cerebral ischemia. Brain Behav Immun 2010, 24:800-811.
  • [24]Gao Y, Signore AP, Yin W, Cao G, Yin XM, Sun F, Luo Y, Graham SH, Chen J: Neuroprotection against focal ischemic brain injury by inhibition of c-Jun N-terminal kinase and attenuation of the mitochondrial apoptosis-signaling pathway. J Cereb Blood Flow Metab 2005, 25:694-712.
  • [25]Borsello T, Clarke PG, Hirt L, Vercelli A, Repici M, Schorderet DF, Bogousslavsky J, Bonny C: A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med 2003, 9:1180-1186.
  • [26]Pirianov G, Brywe KG, Mallard C, Edwards AD, Flavell RA, Hagberg H, Mehmet H: Deletion of the c-Jun N-terminal kinase 3 gene protects neonatal mice against cerebral hypoxic-ischaemic injury. J Cereb Blood Flow Metab 2007, 27:1022-1032.
  • [27]Han BH, Holtzman DM: BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway. J Neurosci 2000, 20:5775-5781.
  • [28]Spudich A, Frigg R, Kilic E, Kilic U, Oesch B, Raeber A, Bassetti CL, Hermann DM: Aggravation of ischemic brain injury by prion protein deficiency: role of ERK-1/-2 and STAT-1. Neurobiol Dis 2005, 20:442-449.
  • [29]Ahlemeyer B, Krieglstein J: Neuroprotective effects of Ginkgo biloba extract. Cell Mol Life Sci 2003, 60:1779-1792.
  • [30]Strømgaard K, Nakanishi K: Chemistry and biology of terpene trilactones from Ginkgo biloba. Angew Chem Int Ed Engl 2004, 43:1640-1658.
  • [31]Defeudis FV: Bilobalide and neuroprotection. Pharmacol Res 2002, 46:565-568.
  • [32]Schwarzkopf TM, Koch KA, Klein J: Neurodegeneration after transient brain ischemia in aged mice: beneficial effects of bilobalide. Brain Res 2013, 1529:178-187.
  • [33]Goldie M, Dolan S: Bilobalide, a unique constituent of Ginkgo biloba, inhibits inflammatory pain in rats. Behav Pharmacol 2013, 24:298-306.
  • [34]Sasaki K, Wada K, Hatta S, Ohshika H, Haga M: Bilobalide, a constituent of Ginkgo biloba L., potentiates drug-metabolizing enzyme activities in mice: possible mechanism for anticonvulsant activity against 4-O-methylpyridoxine-induced convulsions. Res Commun Mol Pathol Pharmacol 1997, 96:45-56.
  • [35]Huang SH, Duke RK, Chebib M, Sasaki K, Wada K, Johnston GA: Bilobalide, a sesquiterpene trilactone from Ginkgo biloba, is an antagonist at recombinant ?1?2?2L GABAA receptors. Eur J Pharmacol 2003, 464:1-8.
  • [36]Hawthorne R, Cromer BA, Ng HL, Parker MW, Lynch JW: Molecular determinants of ginkgolide binding in the glycine receptor pore. J Neurochem 2006, 98:395-407.
  • [37]Thompson AJ, Duke RK, Lummis SC: Binding sites for bilobalide, diltiazem, ginkgolide, and picrotoxinin at the 5-HT3 receptor. Mol Pharmacol 2011, 80:183-190.
  • [38]Thompson AJ, Jarvis GE, Duke RK, Johnston GA, Lummis SC: Ginkgolide B and bilobalide block the pore of the 5-HT3 receptor at a location that overlaps the picrotoxin binding site. Neuropharmacology 2011, 60:488-495.
  • [39]Mdzinarishvili A, Kiewert C, Kumar V, Hillert M, Klein J: Bilobalide prevents ischemia-induced edema formation in vitro and in vivo. Neuroscience 2007, 144:217-222.
  • [40]Zhou LJ, Zhu XZ: Reactive oxygen species-induced apoptosis in PC12 cells and protective effect of bilobalide. J Pharmacol Exp Ther 2000, 293:982-988.
  • [41]Bruno C, Cuppini R, Sartini S, Cecchini T, Ambrogini P, Bombardelli E: Regeneration of motor nerves in bilobalide-treated rats. Planta Med 1993, 59:302-307.
  • [42]Yin Y, Ren Y, Wu W, Wang Y, Cao M, Zhu Z, Wang M, Li W: Protective effects of bilobalide on A?25¿35 induced learning and memory impairments in male rats. Pharmacol Biochem Behav 2013, 106:77-84.
  • [43]Lang D, Kiewert C, Mdzinarishvili A, Schwarzkopf TM, Sumbria R, Hartmann J, Klein J: Neuroprotective effects of bilobalide are accompanied by a reduction of ischemia-induced glutamate release in vivo. Brain Res 2011, 1425:155-163.
  • [44]Tchantchou F, Lacor PN, Cao Z, Lao L, Hou Y, Cui C, Klein WL, Luo Y: Stimulation of neurogenesis and synaptogenesis by bilobalide and quercetin via common final pathway in hippocampal neurons. J Alzheimers Dis 2009, 18:787-798.
  • [45]Shi C, Wu F, Yew DT, Xu J, Zhu Y: Bilobalide prevents apoptosis through activation of the PI3K/Akt pathway in SH-SY5Y cells. Apoptosis 2010, 15:715-727.
  • [46]Sun J, Tong L, Luan Q, Deng J, Li Y, Li Z, Dong H, Xiong L: Protective effect of delayed remote limb ischemic postconditioning: role of mitochondrial K (ATP) channels in a rat model of focal cerebral ischemic reperfusion injury. J Cereb Blood Flow Metab 2012, 32:851-859.
  • [47]Rossi R, Basilico F, Rossoni G, Riva A, Morazzoni P, Mauri PL: Liquid chromatography/atmospheric pressure chemical ionization ion trap mass spectrometry of bilobalide in plasma and brain of rats after oral administration of its phospholipidic complex. J Pharm Biomed Anal 2009, 50:224-227.
  • [48]Krieglstein J, Ausmeier F, El-Abhar H, Lippert K, Welsch M, Rupalla K, Henrich-Noack P: Neuroprotective effects of Ginkgo biloba constituents. Eur J Pharm Sci 1995, 3:39-48.
  • [49]Horn J, De Haan R, Vermeulen M, Luiten P, Limburg M: Nimodipine in animal model experiments of focal cerebral ischemia: a systematic review. Stroke 2001, 32:2433-2438.
  • [50]Yanpallewar S, Hota D, Rai S, Kumar M, Acharya S: Nimodipine attenuates biochemical, behavioral and histopathological alterations induced by acute transient and long-term bilateral common carotid occlusion in rats. Pharmacol Res 2004, 49:143-150.
  • [51]Scriabine A, Schuurman T, Traber J: Pharmacological basis for the use of nimodipine in central nervous system disorders. FASEB J 1989, 3:1799-1806.
  • [52]Longa EZ, Weinstein PR, Carlson S, Cummins R: Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 1989, 20:84-91.
  • [53]Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H: Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 1986, 17:472-476.
  • [54]Tsubokawa T, Jadhav V, Solaroglu I, Shiokawa Y, Konishi Y, Zhang JH: Lecithinized superoxide dismutase improves outcomes and attenuates focal cerebral ischemic injury via antiapoptotic mechanisms in rats. Stroke 2007, 38:1057-1062.
  • [55]Ashwal S, Tone B, Tian HR, Cole DJ, Pearce WJ: Core and penumbral nitric oxide synthase activity during cerebral ischemia and reperfusion. Stroke 1998, 29:1037-1046. Discussion, 1047
  • [56]Stumm R, Kolodziej A, Prinz V, Endres M, Wu DF, Hollt V: Pituitary adenylate cyclase-activating polypeptide is up-regulated in cortical pyramidal cells after focal ischemia and protects neurons from mild hypoxic/ischemic damage. J Neurochem 2007, 103:1666-1681.
  • [57]Copani A, Condorelli F, Caruso A, Vancheri C, Sala A, Giuffrida SAM, Canonico P, Nicoletti F, Sortino M: Mitotic signaling by ?-amyloid causes neuronal death. FASEB J 1999, 13:2225-2234.
  • [58]Yan W, Fang Z, Yang Q, Dong H, Lu Y, Lei C, Xiong L: SirT1 mediates hyperbaric oxygen preconditioning-induced ischemic tolerance in rat brain. J Cereb Blood Flow Metab 2013, 33:396-406.
  • [59]Wang Q, Wang F, Li X, Yang Q, Li X, Xu N, Huang Y, Zhang Q, Gou X, Chen S: Electroacupuncture pretreatment attenuates cerebral ischemic injury through ?7 nicotinic acetylcholine receptor-mediated inhibition of high-mobility group box 1 release in rats. J Neuroinflammation 2012, 9:24. BioMed Central Full Text
  • [60]Hossmann KA: Cerebral ischemia: models, methods and outcomes. Neuropharmacology 2008, 55:257-270.
  • [61]Mehta SL, Manhas N, Raghubir R: Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 2007, 54:34-66.
  • [62]Nakka VP, Gusain A, Mehta SL, Raghubir R: Molecular mechanisms of apoptosis in cerebral ischemia: multiple neuroprotective opportunities. Mol Neurobiol 2008, 37:7-38.
  • [63]Otani M, Chatterjee SS, Gabard B, Kreutzberg GW: Effect of an extract of Ginkgo biloba on triethyltin-induced cerebral edema. Acta Neuropathol 1986, 69:54-65.
  • [64]Lin TN, He YY, Wu G, Khan M, Hsu CY: Effect of brain edema on infarct volume in a focal cerebral ischemia model in rats. Stroke 1993, 24:117-121.
  • [65]Slivka A, Murphy E, Horrocks L: Cerebral edema after temporary and permanent middle cerebral artery occlusion in the rat. Stroke 1995, 26:1061-1065. Discussion, 1065¿1066
  • [66]Klein J, Weichel O, Hilgert M, Rupp J, Chatterjee SS, Nawrath H: Excitotoxic hippocampal membrane breakdown and its inhibition by bilobalide: role of chloride fluxes. Pharmacopsychiatry 2003, 36(Suppl 1):S78-S83.
  • [67]Zheng SX, Zhou LJ, Chen ZL, Yin ML, Zhu XZ: Bilobalide promotes expression of glial cell line-derived neurotrophic factor and vascular endothelial growth factor in rat astrocytes. Acta Pharmacol Sin 2000, 21:151-155.
  • [68]Muralikrishna Adibhatla R, Hatcher J: Phospholipase A2, reactive oxygen species, and lipid peroxidation in cerebral ischemia. Free Radic Biol Med 2006, 40:376-387.
  • [69]Chan PH: Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 2001, 21:2-14.
  • [70]Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH: Mechanisms underlying inflammation in neurodegeneration. Cell 2010, 140:918-934.
  • [71]Liu K, Yan M, Zheng X, Yang Y: The dynamic detection of NO during the ischemic postconditioning against global cerebral ischemia/reperfusion injury. Nitric Oxide 2014, 38:17-25.
  • [72]McGahan L, Hakim AM, Robertson GS: Hippocampal Myc and p53 expression following transient global ischemia. Brain Res Mol Brain Res 1998, 56:133-145.
  • [73]Meistrell ME 3rd, Botchkina GI, Wang H, Di Santo E, Cockroft KM, Bloom O, Vishnubhakat JM, Ghezzi P, Tracey KJ: Tumor necrosis factor is a brain damaging cytokine in cerebral ischemia. Shock 1997, 8:341-348.
  • [74]Montaner J, Alvarez-Sabín J, Barberá G, Anglés A, Molina C, Abilleira S, Arenillas J, Chacón P, Monasterio J: Correlation between the expression of proinflammatory cytokines and matrix metalloproteinases in the acute phase of an ischemic stroke. Rev Neurol 2001, 33:115-118.
  • [75]Liu R, Zhang L, Lan X, Li L, Zhang T-T, Sun J-H, Du G-H: Protection by borneol on cortical neurons against oxygen-glucose deprivation/reperfusion: involvement of anti-oxidation and anti-inflammation through nuclear transcription factor ?appaB signaling pathway. Neuroscience 2011, 176:408-419.
  • [76]Rosenzweig HL, Minami M, Lessov NS, Coste SC, Stevens SL, Henshall DC, Meller R, Simon RP, Stenzel-Poore MP: Endotoxin preconditioning protects against the cytotoxic effects of TNF? after stroke: a novel role for TNF? in LPS-ischemic tolerance. J Cereb Blood Flow Metab 2007, 27:1663-1674.
  • [77]Pinteaux E, Trotter P, Simi A: Cell-specific and concentration-dependent actions of interleukin-1 in acute brain inflammation. Cytokine 2009, 45:1-7.
  • [78]Chen T, Liu W, Chao X, Qu Y, Zhang L, Luo P, Xie K, Huo J, Fei Z: Neuroprotective effect of osthole against oxygen and glucose deprivation in rat cortical neurons: involvement of mitogen-activated protein kinase pathway. Neuroscience 2011, 183:203-211.
  • [79]Lang D, Ude C, Wurglics M, Schubert-Zsilavecz M, Klein J: Brain permeability of bilobalide as probed by microdialysis before and after middle cerebral artery occlusion in mice. J Pharm Pharm Sci 2010, 13:607-614.
  • [80]Maclennan KM, Darlington CL, Smith PF: The CNS effects of Ginkgo biloba extracts and ginkgolide B. Prog Neurobiol 2002, 67:235-257.
  文献评价指标  
  下载次数:44次 浏览次数:10次