Journal of Hematology & Oncology | |
IGF-IR determines the fates of BCR/ABL leukemia | |
Cheng Cheng Zhang1  Xuemei Hu3  Martin Holzenberger2  Satomi Stacy1  Chunling Li3  Junke Zheng1  Xiaoli Chen1  Jingjing Xie3  | |
[1] Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, 75390, TX, USA;INSERM and Sorbonne Universities, UPMC, Research Center UMR938, Paris, 75012, France;Taishan Scholar Immunology Program, Binzhou Medical University, Yantai, 264003, Shandong, China | |
关键词: IGF-IR; BCR/ABL; Tyrosine kinase receptor; Hematopoietic stem cells; Acute lymphoblastic leukemia; Chronic myeloid leukemia; Leukemia; | |
Others : 1133472 DOI : 10.1186/s13045-015-0106-8 |
|
received in 2014-11-06, accepted in 2015-01-05, 发布年份 2015 |
【 摘 要 】
Background
The tyrosine kinase receptor insulin-like growth factor 1 receptor (IGF-IR) contributes to the initiation and progression of many types of malignancies. We previously showed that IGF-2, which binds IGF-IR, is an extrinsic factor that supports the ex vivo expansion of hematopoietic stem cells (HSCs). We also demonstrated that IGF-IR is not required for HSC activity in vivo.
Methods and results
Here we investigated the role of IGF-IR in chronic myeloid leukemia (CML) using the retroviral BCR/ABL transplantation mouse model. Existing antibodies against IGF-IR are not suitable for flow cytometry; therefore, we generated a fusion of the human IgG Fc fragment with mutant IGF-2 that can bind to IGF-IR. We used this fusion protein to evaluate mouse primary hematopoietic populations. Through transplantation assays with IGF-IR+ and IGF-IR− cells, we demonstrated that IGF-IR is expressed on all mouse HSCs. The expression of IGF-IR is much higher on CML cells than on acute lymphoblastic leukemia (ALL) cells. The depletion of IGF-IR expression in BCR/ABL+ cells led to the development of ALL (mostly T cell ALL) but not CML. Lack of IGF-IR resulted in decreased self-renewal of the BCR/ABL+ CML cells in the serial replating assay.
Conclusion
IGF-IR regulates the cell fate determination of BCR/ABL+ leukemia cells and supports the self-renewal of CML cells.
【 授权许可】
2015 Xie et al.; licensee Biomed Central.
Files | Size | Format | View |
---|---|---|---|
Figure 4. | 99KB | Image | download |
Figure 3. | 84KB | Image | download |
Figure 2. | 72KB | Image | download |
Figure 1. | 50KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Konopka JB, Watanabe SM, Witte ON: An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell 1984, 37:1035-42.
- [2]Shtivelman E, Lifshitz B, Gale RP, Canaani E: Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature 1985, 315:550-4.
- [3]Daley GQ, Van Etten RA, Baltimore D: Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 1990, 247:824-30.
- [4]Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, et al.: Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001, 293:876-80.
- [5]Hochhaus A, Kreil S, Corbin AS, La Rosee P, Muller MC, Lahaye T, et al.: Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 2002, 16:2190-6.
- [6]Willis SG, Lange T, Demehri S, Otto S, Crossman L, Niederwieser D, et al.: High-sensitivity detection of BCR-ABL kinase domain mutations in imatinib-naive patients: correlation with clonal cytogenetic evolution but not response to therapy. Blood 2005, 106:2128-37.
- [7]O’Hare T, Eide CA, Deininger MW: Bcr-Abl kinase domain mutations, drug resistance, and the road to a cure for chronic myeloid leukemia. Blood 2007, 110:2242-9.
- [8]NestaldeMoraes G, Souza PS, Costas FC, Vasconcelos FC, Reis FR, Maia RC: The interface between BCR-ABL-dependent and -independent resistance signaling pathways in chronic myeloid leukemia. Leuk Res Treatment 2012, 2012:671702.
- [9]O’Hare T, Zabriskie MS, Eiring AM, Deininger MW: Pushing the limits of targeted therapy in chronic myeloid leukaemia. Nat Rev Cancer 2012, 12:513-26.
- [10]Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ: Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest 2011, 121:396-409.
- [11]Pollak MN, Schernhammer ES, Hankinson SE: Insulin-like growth factors and neoplasia. Nat Rev Cancer 2004, 4:505-18.
- [12]LeRoith D, Roberts CT Jr: The insulin-like growth factor system and cancer. Cancer Lett 2003, 195:127-37.
- [13]Baker J, Liu JP, Robertson EJ, Efstratiadis A: Role of insulin-like growth factors in embryonic and postnatal growth. Cell 1993, 75:73-82.
- [14]Khandwala HM, McCutcheon IE, Flyvbjerg A, Friend KE: The effects of insulin-like growth factors on tumorigenesis and neoplastic growth. Endocr Rev 2000, 21:215-44.
- [15]Doepfner KT, Spertini O, Arcaro A: Autocrine insulin-like growth factor-I signaling promotes growth and survival of human acute myeloid leukemia cells via the phosphoinositide 3-kinase/Akt pathway. Leukemia 2007, 21:1921-30.
- [16]Jenkins CR, Shevchuk OO, Giambra V, Lam SH, Carboni JM, Gottardis MM, et al.: IGF signaling contributes to malignant transformation of hematopoietic progenitors by the MLL-AF9 oncoprotein. Exp Hematol 2012, 40:715-23. e716
- [17]Weng AP, Ferrando AA, Lee W, Morris JP, Silverman LB, Sanchez-Irizarry C, et al.: Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004, 306:269-71.
- [18]Gusscott S, Kuchenbauer F, Humphries RK, Weng AP: Notch-mediated repression of miR-223 contributes to IGF1R regulation in T-ALL. Leuk Res 2012, 36:905-11.
- [19]Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Akiyama M, et al.: Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell 2004, 5:221-30.
- [20]Lakshmikuttyamma A, Pastural E, Takahashi N, Sawada K, Sheridan DP, DeCoteau JF, et al.: Bcr-Abl induces autocrine IGF-1 signaling. Oncogene 2008, 27:3831-44.
- [21]Zhang CC, Lodish HF: Insulin-like growth factor 2 expressed in a novel fetal liver cell population is a growth factor for hematopoietic stem cells. Blood 2004, 103:2513-21.
- [22]Huynh H, Zheng J, Umikawa M, Zhang C, Silvany R, Iizuka S, et al.: IGF binding protein 2 supports the survival and cycling of hematopoietic stem cells. Blood 2011, 118:3236-43.
- [23]Sakano K, Enjoh T, Numata F, Fujiwara H, Marumoto Y, Higashihashi N, et al.: The design, expression, and characterization of human insulin-like growth factor II (IGF-II) mutants specific for either the IGF-II/cation-independent mannose 6-phosphate receptor or IGF-I receptor. J Biol Chem 1991, 266:20626-35.
- [24]Krause DS, Lazarides K, von Andrian UH, Van Etten RA: Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med 2006, 12:1175-80.
- [25]Zhang X, Ren R: Bcr-Abl efficiently induces a myeloproliferative disease and production of excess interleukin-3 and granulocyte-macrophage colony-stimulating factor in mice: a novel model for chronic myelogenous leukemia. Blood 1998, 92:3829-40.
- [26]Li S, Ilaria RL Jr, Million RP, Daley GQ, Van Etten RA: The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. J Exp Med 1999, 189:1399-412.
- [27]Bendall SC, Stewart MH, Menendez P, George D, Vijayaragavan K, Werbowetski-Ogilvie T, et al.: IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature 2007, 448:1015-21.
- [28]Crews LA, Jamieson CH: Selective elimination of leukemia stem cells: hitting a moving target. Cancer Lett 2013, 338:15-22.
- [29]Krause DS, Lazarides K, Lewis JB, von Andrian UH, Van Etten RA: Selectins and their ligands are required for homing and engraftment of BCR-ABL1+ leukemic stem cells in the bone marrow niche. Blood 2014, 123:1361-71.
- [30]Laperrousaz B, Jeanpierre S, Sagorny K, Voeltzel T, Ramas S, Kaniewski B, et al.: Primitive CML cell expansion relies on abnormal levels of BMPs provided by the niche and on BMPRIb overexpression. Blood 2013, 122:3767-77.
- [31]Reynaud D, Pietras E, Barry-Holson K, Mir A, Binnewies M, Jeanne M, et al.: IL-6 controls leukemic multipotent progenitor cell fate and contributes to chronic myelogenous leukemia development. Cancer Cell 2011, 20:661-73.
- [32]Kobayashi CI, Takubo K, Kobayashi H, Nakamura-Ishizu A, Honda H, Kataoka K, et al.: The IL-2/CD25 axis maintains distinct subsets of chronic myeloid leukemia-initiating cells. Blood 2014, 123:2540-9.
- [33]Zhang CC: Novel signaling axis in CML-initiating cells. Blood 2014, 123:2443-5.
- [34]Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A, Even PC, et al.: IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 2003, 421:182-7.
- [35]Kocabas F, Zheng J, Thet S, Copeland NG, Jenkins NA, Deberardinis RJ, et al.: Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells. Blood 2012, 120:4963-72.
- [36]Chen X, Zheng J, Zou Y, Song C, Hu X, Zhang CC: IGF binding protein 2 is a cell-autonomous factor supporting survival and migration of acute leukemia cells. J Hematol Oncol 2013, 6:72. BioMed Central Full Text
- [37]Zheng J, Umikawa M, Zhang S, Huynh H, Silvany R, Chen BP, et al.: Ex vivo expanded hematopoietic stem cells overcome the MHC barrier in allogeneic transplantation. Cell Stem Cell 2011, 9:119-30.
- [38]Zheng J, Umikawa M, Cui C, Li J, Chen X, Zhang C, et al.: Inhibitory receptors bind ANGPTLs and support blood stem cells and leukaemia development. Nature 2012, 485:656-60.
- [39]Zheng J, Lu Z, Kocabas F, Bottcher RT, Costell M, Kang X, et al.: Profilin 1 is essential for retention and metabolism of mouse hematopoietic stem cells in bone marrow. Blood 2014, 123:992-1001.
- [40]Deng M, Lu Z, Zheng J, Wan X, Chen X, Hirayasu K, et al.: A motif in LILRB2 critical for Angptl2 binding and activation. Blood 2014, 124:924-35.
- [41]Huynh H, LIizuka S, Kaba M, Kirak O, Zheng J, Lodish HF, et al.: IGFBP2 secreted by a tumorigenic cell line supports ex vivo expansion of mouse hematopoietic stem cells. Stem Cells 2008, 26:1628-35.