期刊论文详细信息
Journal of Biological Engineering
Gold nanoparticle-labeled biosensor for rapid and sensitive detection of bacterial pathogens
Evangelyn C. Alocilja2  Yun Wang1 
[1] Present address: Division of Food Processing Science and Technology, U. S. Food and Drug Administration, Bedford Park 60501, IL, USA;Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing 48824, MI, USA
关键词: Antibodies;    Electrochemical measurement;    Magnetic separation;    Nanoparticles;    Rapid detection;    Biosensor;    E. coli O157:H7;   
Others  :  1230535
DOI  :  10.1186/s13036-015-0014-z
 received in 2015-08-17, accepted in 2015-09-15,  发布年份 2015
【 摘 要 】

Background

Escherichia coli O157:H7 is one of the major foodborne bacterial pathogens and also a biodefense agent. To ensure food safety and public health, it is very important to develop rapid methods for E. coli O157:H7 detection. In this study, we designed a nanoparticle-labeled biosensor for the rapid detection of E. coli O157:H7 in broth.

Results

Magnetic nanoparticles (MNPs) were conjugated with monoclonal antibodies (Abs) to separate target E. coli O157:H7 cells from broth samples. Gold nanoparticles (AuNPs) were conjugated with polyclonal Abs, and were then introduced to the MNP-target complex to form a sandwich MNP-target-AuNP. By measuring the amount of AuNPs through an electrochemical method, the presence and the amount of the target bacteria were determined. Results showed a sensitivity of 10 1colony forming units per milliliter (cfu/ml) with a linear range of 10 1 –10 6  cfu/ml.

Conclusions

Compared to conventional culture plating methods, the biosensor reduced the detection time from 2 to 4 days to less than 1 hour with a simple target extraction method. The AuNP-labeled biosensor has potential applications in the rapid detection of infectious agents for public health, biodefense, and food/water safety.

【 授权许可】

   
2015 Wang and Alocilja.

附件列表
Files Size Format View
Fig. 6. 16KB Image download
Fig. 5. 38KB Image download
Fig. 4. 21KB Image download
Fig. 3. 45KB Image download
Fig. 2. 32KB Image download
Fig. 1. 37KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

【 参考文献 】
  • [1]United States Centers for Disease Control and Prevention (CDC). Multistate Outbreak of E. coli O157:H7 Infections Linked to Eating Raw Refrigerated, Prepackaged Cookie Dough. 2009. http://www.cdc.gov/ecoli/2009/0630.html. Accessed 9 Jun 2015.
  • [2]CDC. Investigation Announcement: Multistate Outbreak of E. coli O157:H7 Infections Linked to Romaine Lettuce. 2011. http://www.cdc.gov/ecoli/2011/ecoliO157/romainelettuce/120711/. Accessed 9 Jun 2015.
  • [3]CDC. Multistate Outbreak of Shiga toxin-producing Escherichia coli O157:H7 Infections Linked to Ground Beef. 2014. http://www.cdc.gov/ecoli/2014/O157H7-05-14/index.html. Accessed 9 Jun 2015.
  • [4]Luo Y, Nartker S, Miller H, Hochhalter D, Wiederoder M, Wiederoder S, Setterington E, Drzal LT, Alocilja EC. Surface functionalization of electrospun nanofibers for detecting E. coli O157:H7 and BVDV cells in a direct-charge transfer biosensor. Biosens Bioelectron. 2010; 26(4):1612-1617.
  • [5]Radke SM, Alocilja EC. A high density microelectrode array biosensor for detection of E. coli O157:H7. Biosens Bioelectron. 2005; 20(8):1662-1667.
  • [6]Setterington EB, Cloutier BC, Ochoa JM, Cloutier AK, Jain P, Alocilja EC. Rapid, sensitive, and specific immunomagnetic separation of foodborne pathogens. Int J Food Saf Nutr Public Health. 2011; 4(1):83-100.
  • [7]Wang Y, Wang R, Li Y, Srinivasan B, Tung S, Wang H, Slavik MF, Griffis CL. Detection of Escherichia coli O157:H7 using interdigitated array microelectrode-based immunosensor. Biol Eng. 2010; 2(2):49-62.
  • [8]Wang Y, Fewins P, Alocilja EC. Electrochemical Immunosensor Using Nanoparticle-based Signal Enhancement for Escherichia coli O157:H7 Detection. Sensors Journal, IEEE. 2015; 15(8):4692-9.
  • [9]Linman MJ, Sugerman K, Cheng Q. Detection of low levels of Escherichia coli in fresh spinach by surface plasmon resonance spectroscopy with a TMB-based enzymatic signal enhancement method. Sensors Actuators B Chem. 2010; 145(2):613-619.
  • [10]Park S, Kim H, Paek S, Hong JW, Kim Y. Enzyme-linked immuno-strip biosensor to detect Escherichia coli O157:H7. Ultramicroscopy. 2008; 108(10):1348-1351.
  • [11]Sun H, Choy TS, Zhu DR, Yam WC, Fung YS. Nano-silver-modified PQC/DNA biosensor for detecting E. coli in environmental water. Biosens Bioelectron. 2009; 24(5):1405-1410.
  • [12]Wang L, Liu Q, Hu Z, Zhang Y, Wu C, Yang M, Wang P. A novel electrochemical biosensor based on dynamic polymerase-extending hybridization for E. coli O157:H7 DNA detection. Talanta. 2009; 78(3):647-652.
  • [13]Foodborne Pathogens: Risks and Consequences. 1994. Report No. 122
  • [14]Li K, Lai Y, Zhang W, Jin L. Fe2O3@Au core/shell nanoparticle-based electrochemical DNA biosensor for Escherichia coli detection. Talanta. 2011; 84(3):607-613.
  • [15]Zhang D, Huarng MC, Alocilja EC. A multiplex nanoparticle-based bio-barcoded DNA sensor for the simultaneous detection of multiple pathogens. Biosens Bioelectron. 2010; 26(4):1736-1742.
  • [16]Hao R, Song H, Zuo G, Yang R, Wei H, Wang D, Cui Z, Zhang Z, Cheng Z, Zhang X. DNA probe functionalized QCM biosensor based on gold nanoparticle amplification for Bacillus anthracis detection. Biosens Bioelectron. 2011; 26(8):3398-3404.
  • [17]Jiang X, Wang R, Wang Y, Su X, Ying Y, Wang J, Li Y. Evaluation of different micro/nanobeads used as amplifiers in QCM immunosensor for more sensitive detection of E. coli O157:H7. Biosens Bioelectron. 2011; 29(1):23-28.
  • [18]Pal S, Alocilja EC. Electrically active polyaniline coated magnetic (EAPM) nanoparticle as novel transducer in biosensor for detection of Bacillus anthracis spores in food samples. Biosens Bioelectron. 2009; 24(5):1437-1444.
  • [19]Hyeon T, Lee S, Park J, Chung Y, Bin NH. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc. 2001; 123(51):12798-12801.
  • [20]Shaikh SF, Lim JY, Mane RS, Han S, Ambade SB, Joo O. Wet-chemical polyaniline nanorice mass-production for electrochemical supercapacitors. Synth Met. 2012; 162(13–14):1303-1307.
  • [21]Cloutier BC. Development of mitigation strategies toward preventative postures in food defense. Ph.D. Michigan State University, United States, Michigan; 2012.
  • [22]Anderson MJ, Torres-Chavolla E, Castro BA, Alocilja EC. One step alkaline synthesis of biocompatible gold nanoparticles using dextrin as capping agent. J Nanopart Res. 2011; 13(7):2843-2851.
  文献评价指标  
  下载次数:79次 浏览次数:30次