Epigenetics & Chromatin | |
Target of rapamycin signaling regulates high mobility group protein association to chromatin, which functions to suppress necrotic cell death | |
R Nicholas Laribee1  Alexa Tenga1  Jason J Workman1  Hongfeng Chen1  | |
[1] Department of Pathology and Laboratory Medicine and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA | |
关键词: Target of rapamycin; Nutrient signaling; Necrosis; Histone; High mobility group protein; | |
Others : 809715 DOI : 10.1186/1756-8935-6-29 |
|
received in 2013-04-01, accepted in 2013-06-27, 发布年份 2013 | |
【 摘 要 】
Background
The target of rapamycin complex 1 (TORC1) is an evolutionarily conserved signal transduction pathway activated by environmental nutrients that regulates gene transcription to control cell growth and proliferation. How TORC1 modulates chromatin structure to control gene expression, however, is largely unknown. Because TORC1 is a major transducer of environmental information, defining this process has critical implications for both understanding environmental effects on epigenetic processes and the role of aberrant TORC1 signaling in many diseases, including cancer, diabetes, and cardiovascular disease.
Results
To elucidate the role of TORC1 signaling in chromatin regulation, we screened a budding yeast histone H3 and H4 mutant library using the selective TORC1 inhibitor rapamycin to identify histone residues functionally connected to TORC1. Intriguingly, we identified histone H3 lysine 37 (H3K37) as a residue that is essential during periods of limited TORC1 activity. An H3K37A mutation resulted in cell death by necrosis when TORC1 signaling was simultaneously impaired. The induction of necrosis was linked to alterations in high mobility group (HMG) protein binding to chromatin. Furthermore, the necrotic phenotype could be recapitulated in wild-type cells by deregulating the model HMG proteins, Hmo1 or Ixr1, thus implicating a direct role for HMG protein deregulation as a stimulus for inducing necrosis.
Conclusions
This study identifies histone H3 and H4 residues functionally required for TORC1-dependent cell growth and proliferation that are also candidate epigenetic pathways regulated by TORC1 signaling. It also demonstrates a novel role for H3K37 and TORC1 in regulating the binding of select HMG proteins to chromatin and that HMG protein deregulation can initiate a necrotic cell death response. Overall, the results from this study suggest a possible model by which chromatin anchors HMG proteins during periods of limited TORC1 signaling, such as that which occurs during conditions of nutrient stress, to suppress necrotic cell death.
【 授权许可】
2013 Chen et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140709021230540.pdf | 2686KB | download | |
Figure 8. | 100KB | Image | download |
Figure 7. | 156KB | Image | download |
Figure 6. | 103KB | Image | download |
Figure 5. | 52KB | Image | download |
Figure 4. | 71KB | Image | download |
Figure 3. | 91KB | Image | download |
Figure 2. | 43KB | Image | download |
Figure 1. | 73KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
【 参考文献 】
- [1]Vaquero A, Reinberg D: Calorie restriction and the exercise of chromatin. Genes Dev 2009, 23:1849-1869.
- [2]Tammen SA, Friso S, Choi SW: Epigenetics: the link between nature and nurture. Mol Aspects Med 2013, 34:753-764.
- [3]Moazed D: Mechanisms for the inheritance of chromatin states. Cell 2011, 146:510-518.
- [4]Zoncu R, Efeyan A, Sabatini DM: mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011, 12:21-35.
- [5]Loewith R, Hall MN: Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 2011, 189:1177-1201.
- [6]Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN: Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 2002, 10:457-468.
- [7]Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, Hall MN: Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 2004, 6:1122-1128.
- [8]Zurita-Martinez SA, Puria R, Pan X, Boeke JD, Cardenas ME: Efficient Tor signaling requires a functional class C Vps protein complex in Saccharomyces cerevisiae. Genetics 2007, 176:2139-2150.
- [9]Binda M, Peli-Gulli MP, Bonfils G, Panchaud N, Urban J, Sturgill TW, Loewith R, De Virgilio C: The Vam6 GEF controls TORC1 by activating the EGO complex. Mol Cell 2009, 35:563-573.
- [10]Voordeckers K, Kimpe M, Haesendonckx S, Louwet W, Versele M, Thevelein JM: Yeast 3-phosphoinositide-dependent protein kinase-1 (PDK1) orthologs Pkh1-3 differentially regulate phosphorylation of protein kinase A (PKA) and the protein kinase B (PKB)/S6K ortholog Sch9. J Biol Chem 2011, 286:22017-22027.
- [11]Urban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D, Deloche O, Wanke V, Anrather D, Ammerer G, Riezman H, Broach JR, De Virgilio C, Hall MN, Loewith R: Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell 2007, 26:663-674.
- [12]Huber A, Bodenmiller B, Uotila A, Stahl M, Wanka S, Gerrits B, Aebersold R, Loewith R: Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis. Genes Dev 2009, 23:1929-1943.
- [13]Li H, Tsang CK, Watkins M, Bertram PG, Zheng XF: Nutrient regulates Tor1 nuclear localization and association with rDNA promoter. Nature 2006, 442:1058-1061.
- [14]Wei Y, Tsang CK, Zheng XF: Mechanisms of regulation of RNA polymerase III-dependent transcription by TORC1. EMBO J 2009, 28:2220-2230.
- [15]Tsang CK, Liu H, Zheng XF: mTOR binds to the promoters of RNA polymerase I- and III-transcribed genes. Cell Cycle 2010, 9:953-957.
- [16]Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P: mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 2007, 450:736-740.
- [17]Kantidakis T, Ramsbottom BA, Birch JL, Dowding SN, White RJ: mTOR associates with TFIIIC, is found at tRNA and 5S rRNA genes, and targets their repressor Maf1. Proc Natl Acad Sci USA 2010, 107:11823-11828.
- [18]Damelin M, Simon I, Moy TI, Wilson B, Komili S, Tempst P, Roth FP, Young RA, Cairns BR, Silver PA: The genome-wide localization of Rsc9, a component of the RSC chromatin-remodeling complex, changes in response to stress. Mol Cell 2002, 9:563-573.
- [19]Rohde JR, Cardenas ME: The tor pathway regulates gene expression by linking nutrient sensing to histone acetylation. Mol Cell Biol 2003, 23:629-635.
- [20]Huber A, French SL, Tekotte H, Yerlikaya S, Stahl M, Perepelkina MP, Tyers M, Rougemont J, Beyer AL, Loewith R: Sch9 regulates ribosome biogenesis via Stb3, Dot6 and Tod6 and the histone deacetylase complex RPD3L. EMBO J 2011, 30:3052-3064.
- [21]Tsang CK, Bertram PG, Ai W, Drenan R, Zheng XF: Chromatin-mediated regulation of nucleolar structure and RNA Pol I localization by TOR. EMBO J 2003, 22:6045-6056.
- [22]Dai J, Hyland EM, Yuan DS, Huang H, Bader JS, Boeke JD: Probing nucleosome function: a highly versatile library of synthetic histone H3 and H4 mutants. Cell 2008, 134:1066-1078.
- [23]Huang H, Maertens AM, Hyland EM, Dai J, Norris A, Boeke JD, Bader JS: HistoneHits: a database for histone mutations and their phenotypes. Genome Res 2009, 19:674-681.
- [24]Reinke A, Chen JC, Aronova S, Powers T: Caffeine targets TOR complex I and provides evidence for a regulatory link between the FRB and kinase domains of Tor1p. J Biol Chem 2006, 281:31616-31626.
- [25]Wanke V, Cameroni E, Uotila A, Piccolis M, Urban J, Loewith R, De Virgilio C: Caffeine extends yeast lifespan by targeting TORC1. Mol Microbiol 2008, 69:277-285.
- [26]Soulard A, Cremonesi A, Moes S, Schutz F, Jeno P, Hall MN: The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates. Mol Biol Cell 2010, 21:3475-3486.
- [27]Schmelzle T, Beck T, Martin DE, Hall MN: Activation of the RAS/cyclic AMP pathway suppresses a TOR deficiency in yeast. Mol Cell Biol 2004, 24:338-351.
- [28]Ramachandran V, Herman PK: Antagonistic interactions between the cAMP-dependent protein kinase and Tor signaling pathways modulate cell growth in Saccharomyces cerevisiae. Genetics 2011, 187:441-454.
- [29]Howard SC, Hester A, Herman PK: The Ras/PKA signaling pathway may control RNA polymerase II elongation via the Spt4p/Spt5p complex in Saccharomyces cerevisiae. Genetics 2003, 165:1059-1070.
- [30]Zaman S, Lippman SI, Zhao X, Broach JR: How Saccharomyces responds to nutrients. Annu Rev Genet 2008, 42:27-81.
- [31]Venema J, Tollervey D: Ribosome synthesis in Saccharomyces cerevisiae. Annu Rev Genet 1999, 33:261-311.
- [32]French SL, Osheim YN, Cioci F, Nomura M, Beyer AL: In exponentially growing Saccharomyces cerevisiae cells, rRNA synthesis is determined by the summed RNA polymerase I loading rate rather than by the number of active genes. Mol Cell Biol 2003, 23:1558-1568.
- [33]Gallagher JE, Dunbar DA, Granneman S, Mitchell BM, Osheim Y, Beyer AL, Baserga SJ: RNA polymerase I transcription and pre-rRNA processing are linked by specific SSU processome components. Genes Dev 2004, 18:2506-2517.
- [34]Osheim YN, French SL, Keck KM, Champion EA, Spasov K, Dragon F, Baserga SJ, Beyer AL: Pre-18S ribosomal RNA is structurally compacted into the SSU processome prior to being cleaved from nascent transcripts in Saccharomyces cerevisiae. Mol Cell 2004, 16:943-954.
- [35]Clemente-Blanco A, Mayan-Santos M, Schneider DA, Machin F, Jarmuz A, Tschochner H, Aragon L: Cdc14 inhibits transcription by RNA polymerase I during anaphase. Nature 2009, 458:219-222.
- [36]Chen H, Fan M, Pfeffer LM, Laribee RN: The histone H3 lysine 56 acetylation pathway is regulated by target of rapamycin (TOR) signaling and functions directly in ribosomal RNA biogenesis. Nucleic Acids Res 2012, 40:6534-6546.
- [37]Tatchell K, Makrantoni V, Stark MJ, Robinson LC: Temperature-sensitive ipl1-2/Aurora B mutation is suppressed by mutations in TOR complex 1 via the Glc7/PP1 phosphatase. Proc Natl Acad Sci USA 2011, 108:3994-3999.
- [38]Nakashima A, Maruki Y, Imamura Y, Kondo C, Kawamata T, Kawanishi I, Takata H, Matsuura A, Lee KS, Kikkawa U, Ohsumi Y, Yonezawa K, Kamada Y: The yeast Tor signaling pathway is involved in G2/M transition via polo-kinase. PLoS One 2008, 3:e2223.
- [39]Szerlong HJ, Prenni JE, Nyborg JK, Hansen JC: Activator-dependent p300 acetylation of chromatin in vitro: enhancement of transcription by disruption of repressive nucleosome-nucleosome interactions. J Biol Chem 2010, 285:31954-31964.
- [40]Unnikrishnan A, Gafken PR, Tsukiyama T: Dynamic changes in histone acetylation regulate origins of DNA replication. Nat Struct Mol Biol 2010, 17:430-437.
- [41]Dubouloz F, Deloche O, Wanke V, Cameroni E, De Virgilio C: The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol Cell 2005, 19:15-26.
- [42]Ludovico P, Sousa MJ, Silva MT, Leao C, Corte-Real M: Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology 2001, 147:2409-2415.
- [43]Golstein P, Kroemer G: Cell death by necrosis: towards a molecular definition. Trends Biochem Sci 2007, 32:37-43.
- [44]Kawase T, Sato K, Ueda T, Yoshida M: Distinct domains in HMGB1 are involved in specific intramolecular and nucleosomal interactions. Biochemistry 2008, 47:13991-13996.
- [45]Saccharomyces genome databasehttp://www.yeastgenome.org/ webcite
- [46]Kasahara K, Ohtsuki K, Ki S, Aoyama K, Takahashi H, Kobayashi T, Shirahige K, Kokubo T: Assembly of regulatory factors on rRNA and ribosomal protein genes in Saccharomyces cerevisiae. Mol Cell Biol 2007, 27:6686-6705.
- [47]Morrison AJ, Highland J, Krogan NJ, Arbel-Eden A, Greenblatt JF, Haber JE, Shen X: INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 2004, 119:767-775.
- [48]Morrison AJ, Shen X: Chromatin remodelling beyond transcription: the INO80 and SWR1 complexes. Nat Rev Mol Cell Biol 2009, 10:373-384.
- [49]Hall DB, Wade JT, Struhl K: An HMG protein, Hmo1, associates with promoters of many ribosomal protein genes and throughout the rRNA gene locus in Saccharomyces cerevisiae. Mol Cell Biol 2006, 26:3672-3679.
- [50]Gadal O, Labarre S, Boschiero C, Thuriaux P: Hmo1, an HMG-box protein, belongs to the yeast ribosomal DNA transcription system. EMBO J 2002, 21:5498-5507.
- [51]Berger AB, Decourty L, Badis G, Nehrbass U, Jacquier A, Gadal O: Hmo1 is required for TOR-dependent regulation of ribosomal protein gene transcription. Mol Cell Biol 2007, 27:8015-8026.
- [52]Scaffidi P, Misteli T, Bianchi ME: Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002, 418:191-195.
- [53]Eisenberg T, Knauer H, Schauer A, Büttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, Fussi H, Deszcz L, Hartl R, Schraml E, Criollo A, Megalou E, Weiskopf D, Laun P, Heeren G, Breitenbach M, Grubeck-Loebenstein B, Herker E, Fahrenkrog B, Fröhlich KU, Sinner F, Tavernarakis N, Minois N, Kroemer G, Madeo F: Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 2009, 11:1305-1314.
- [54]Gelperin DM, White MA, Wilkinson ML, Kon Y, Kung LA, Wise KJ, Lopez-Hoyo N, Jiang L, Piccirillo S, Yu H, Gerstein M, Dumont ME, Phizicky EM, Snyder M, Grayhack EJ: Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev 2005, 19:2816-2826.
- [55]Laplante M, Sabatini DM: mTOR signaling in growth control and disease. Cell 2012, 149:274-293.
- [56]Nakanishi S, Sanderson BW, Delventhal KM, Bradford WD, Staehling-Hampton K, Shilatifard A: A comprehensive library of histone mutants identifies nucleosomal residues required for H3K4 methylation. Nat Struct Mol Biol 2008, 15:881-888.
- [57]Weiner A, Chen HV, Liu CL, Rahat A, Klien A, Soares L, Gudipati M, Pfeffner J, Regev A, Buratowski S, Pleiss JA, Friedman N, Rando OJ: Systematic dissection of roles for chromatin regulators in a yeast stress response. PLoS Biol 2012, 10:e1001369.
- [58]Yamaki M, Umehara T, Chimura T, Horikoshi M: Cell death with predominant apoptotic features in Saccharomyces cerevisiae mediated by deletion of the histone chaperone ASF1/CIA1. Genes Cells 2001, 6:1043-1054.
- [59]Formosa T, Eriksson P, Wittmeyer J, Ginn J, Yu Y, Stillman DJ: Spt16-Pob3 and the HMG protein Nhp6 combine to form the nucleosome-binding factor SPN. EMBO J 2001, 20:3506-3517.
- [60]Artal-Sanz M, Samara C, Syntichaki P, Tavernarakis N: Lysosomal biogenesis and function is critical for necrotic cell death in Caenorhabditis elegans. J Cell Biol 2006, 173:231-239.
- [61]Syntichaki P, Samara C, Tavernarakis N: The vacuolar H+-ATPase mediates intracellular acidification required for neurodegeneration in C. elegans. Curr Biol 2005, 15:1249-1254.
- [62]Kim H, Kim A, Cunningham KW: Vacuolar H+-ATPase (V-ATPase) promotes vacuolar membrane permeabilization and nonapoptotic death in stressed yeast. J Biol Chem 2012, 287:19029-19039.
- [63]Tang D, Kang R, Livesey KM, Cheh CW, Farkas A, Loughran P, Hoppe G, Bianchi ME, Tracey KJ, Zeh HJ 3rd, Lotze MT: Endogenous HMGB1 regulates autophagy. J Cell Biol 2010, 190:881-892.
- [64]Eisenberg T, Carmona-Gutierrez D, Buttner S, Tavernarakis N, Madeo F: Necrosis in yeast. Apoptosis , 15:257-268.
- [65]Rizzardi LF, Dorn ES, Strahl BD, Cook JG: DNA replication origin function is promoted by H3K4 di-methylation in Saccharomyces cerevisiae. Genetics , 192:371-384.
- [66]Donovan S, Harwood J, Drury LS, Diffley JF: Cdc6p-dependent loading of Mcm proteins onto pre-replicative chromatin in budding yeast. Proc Natl Acad Sci USA 1997, 94:5611-5616.
- [67]Keogh MC, Kim JA, Downey M, Fillingham J, Chowdhury D, Harrison JC, Onishi M, Datta N, Galicia S, Emili A, Lieberman J, Shen X, Buratowski S, Haber JE, Durocher D, Greenblatt JF, Krogan NJ: A phosphatase complex that dephosphorylates gammaH2AX regulates DNA damage checkpoint recovery. Nature 2006, 439:497-501.
- [68]Haase SB, Reed SI: Improved flow cytometric analysis of the budding yeast cell cycle. Cell Cycle 2002, 1:132-136.
- [69]Rines DR, Thomann D, Dorn JF, Goodwin P, Sorger PK: Live cell imaging of yeast. Cold Spring Harb Protoc 2011, : .