Journal of Translational Medicine | |
Proteomic profiling of lymphocytes in autoimmunity, inflammation and cancer | |
Xiangdong Wang3  Hongzhi Sun1  Chunxue Bai3  Zhitu Zhu1  Jiebai Zhou2  | |
[1] Center for Cancer Molecular and Cellular Therapies, The First Affiliated Hospital of Liaoning Medical University, Liaoning, China;Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai Medical College, Shanghai, China;Shanghai Respiratory Research Institute, Shanghai, China | |
关键词: Cancer; Allergic inflammation; Autoimmune; Lymphocyte; Proteomics; | |
Others : 822279 DOI : 10.1186/1479-5876-12-6 |
|
received in 2013-11-21, accepted in 2014-01-04, 发布年份 2014 | |
【 摘 要 】
Lymphocytes play important roles in the balance between body defense and noxious agents involved in a number of diseases, e.g. autoimmune diseases, allergic inflammation and cancer. The proteomic analyses have been applied to identify and validate disease-associated and disease-specific biomarkers for therapeutic strategies of diseases. The proteomic profiles of lymphocytes may provide more information to understand their functions and roles in the development of diseases, although proteomic approaches in lymphocytes are still limited. The present review overviewed the proteomics-based studies on lymphocytes to headlight the proteomic profiles of lymphocytes in diseases, such as autoimmune diseases, allergic inflammation and cancer, with a special focus on lung diseases. We will explore the potential significance of diagnostic biomarkers and therapeutic targets from the current status in proteomic studies of lymphocytes and discuss the value of the currently available proteomic methodologies in the lymphocytes research.
【 授权许可】
2014 Zhou et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140712095804685.pdf | 811KB | download | |
Figure 2. | 85KB | Image | download |
Figure 1. | 71KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
【 参考文献 】
- [1]von Andrian UH, Mackay CR: Advances in immunology: T-cell function and migration – Two sides of the same coin. N Engl J Med 2000, 343:1020-1033.
- [2]Delves P, Roitt IM: The immune system – First of two parts. N Engl J Med 2000, 343:37-49.
- [3]Delves P, Roitt IM: Advances in immunology: the immune system – second of two parts. N Engl J Med 2000, 343:108-117.
- [4]Pabst R, Tschernig T: Lymphocytes in the lung: an often neglected cells. Numbers, characterization and compartmentalization. Anat Embryol (Berl) 1995, 192:293-299.
- [5]Baumgartner C, Osl M, Netzer M, Baumgartner D: Bioinformatic-driven search for metabolic biomarkers in disease. J Clin Bioinforma 2011, 1:2. BioMed Central Full Text
- [6]Wang XD, Liotta L: Clinical bioinformatics: a new emerging science. J Clin Bioinforma 2011, 1:1. BioMed Central Full Text
- [7]Abraham E, Marincola FM, Chen ZN, Wang XD: Clinical and translational medicine: integrative and practical science. Clin Transl Med 2012, 1:1. BioMed Central Full Text
- [8]Wollscheid B, Watts JD, Aebersold R: Proteomics/genomics and signaling in lymphocytes. Curr Opin Immunol 2004, 16:337-344.
- [9]van Mühlen CA, Tan EM: Autoantibodies in the diagnosis of systemic rheumatic diseases. Semin Arthritis Rheum 1995, 24:333-358.
- [10]Rosengren AT, Nyman TA, Lahesmaa R: Proteome profiling of interleukin-12 treated human T helper cells. Proteomics 2005, 5:3137-3141.
- [11]Baugh JA, Chitnis S, Donnelly SC, Monteiro J, Lin X, Plant BJ, Wolfe F, Gregersen PK, Bucala R: A functional promoter polymorphism in the macrophage migration inhibitory factor (MIF) gene associated with disease severity in rheumatoid arthritis. Genes Immun 2002, 3:170-176.
- [12]Donn R, Alourfi Z, De Benedetti F, Meazza C, Zeggini E, Lunt M, Stevens A, Shelley E, Lamb R, Ollier WE, Thomson W, Ray D: Mutation screening of the macrophage migration inhibitory factor gene: positive association of a functional polymorphism of macrophage migration inhibitory factor with juvenile idiopathic arthritis. Arthritis Rheum 2002, 46:2402-2409.
- [13]Lee CL, Jiang PP, Sit WH, Wan JMF: Proteome of human T lymphocytes with treatment of cyclosporine and polysaccharopeptide: Analysis of significant proteins that manipulate T cells proliferation and immunosuppression. Int Immunopharmacol 2007, 7:1311-1324.
- [14]Ationu A, Humphries A: The feasibility of replacement therapy for inherited disorder of glycolysis: triosephosphate isomerase deficiency. Int J Mol Med 1998, 2:701-704.
- [15]Rabinovich GA, Alonso CR, Sotomayor CE, Durand S, Bocco JL, Riera CM: Molecular mechanisms implicated in galectin-1-induced apoptosis: activation of the AP-1 transcription factor and downregulation of Bcl-2. Cell Death Differ 2000, 7:747-753.
- [16]Bryk R, Griffin P, Nathan C: Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 2000, 407:211-215.
- [17]Tanaka K, Chiba T: The proteasome: a protein-destroying machine. Genes Cells 1998, 3:499-510.
- [18]Sousa LP, Silva BM, Brasil BS, Nogueira SV, Ferreira PC, Kroon EG, Kato K, Bonjardim CA: Plasminogen/plasmin regulates alpha-enolase expression through the MEK/ERK pathway. Biochem Biophys Res Commun 2005, 337:1065-1071.
- [19]Anderson RL, Fong KJ, Gabriele T, Lavagnini P, Hahn GM, Evans JW, Waldren CA, Stamato TD, Giaccia AJ: Loss of the intrinsic heat resistance of human cells and changes in Mr 70,000 heat shock protein expression in human × hamster hybrids. J Cancer Res 1991, 51:2636-2641.
- [20]Rolfe M, Chiu MI, Pagano M: The ubiquitin-mediated proteolytic pathway as a therapeutic area. J Mol Med 1997, 75:5-17.
- [21]Wierenga RK, Borchert TV, Noble ME: Crystallographic binding studies with triosephosphate isomerases: conformational changes induced by substrate and substrate-analogues. FEBS Lett 1992, 307:34-39.
- [22]Rabinovich GA, Baum LG, Tinari N, Paganelli R, Natoli C, Liu FT, Lacobelli S: Galectins and their ligands: amplifiers, silencers or turners of the inflammatory response? Trends Immunol 2002, 23:313-320.
- [23]Boots AM, Verhaert PD, Poele RJT, Evers S, Coenen-de Roo CJ, Cleven J, Bos ES: Antigens up the nose: identification of putative biomarkers for nasal tolerance induction functional studies combined with proteomics. J Proteome Res 2004, 3:1056-1062.
- [24]Kerkhoff C, Klempt M, Sorg C: Novel insights into structure and function of MRP8 (S100A8) and MRP14 (S100A9). Biochim Biophys Acta 1998, 1448:200-211.
- [25]Canfield SM, Khakoo AY: The nonintegrin laminin binding protein (p67 LBP) is expressed on a subset of activated human T lymphocytes and, together with the integrin very late activation antigen-6, mediates avid cellular adherence to laminin. J Immunol 1999, 163:3430-3440.
- [26]Dobryszycka W: Biological functions of haptoglobin—new pieces to an old puzzle. Eur J Clin Chem Clin Biochem 1997, 35:647-654.
- [27]Xu W, Li XQ: Immunoproteomic analysis of the antibody response obtained in mouse following vaccination with a T-cell vaccine. Proteomics 2011, 11:4368-4375.
- [28]Mao LM, Yang PZ, Hou SP, Li FZ, Kijlstra A: Lable-free proteomics reveals decreased expression of CD18 and AKNA in peripheral CD4(+) T cells from patients with Vogt-Koyanagi-Harada syndrome. Plos One 2011, 6:e14616.
- [29]Fae KC, da Silva DD, Bilate AMB, Tanaka AC, Pomerantzeff PMA, Kiss MH, Silva CAA, Cunha-Neto E, Kalil J, Guilherme L: PDIA3, HAPA5 and viementin, proteins identified by 2-DE in the valvular tissue, are the target antigens of peripheral and heart infiltrating T cells from chronic rheumatic heart disease patients. J Autoimmun 2008, 31:136-141.
- [30]Wang XD, Zhao H, Avdersson R: Proteomics and leukocytes: an approach to understanding potential molecular mechanisms of inflammatory responses. J Proteome Res 2004, 3:921-929.
- [31]Komai M, Tanaka H, Masuda T, Nagao K, Ishizaki M, Sawada M, Nagai H: Role of Th2 responses in the development of allergen-induced airway remodelling in a murine model of allergic asthma. Br J Pharmacol 2003, 138:912-920.
- [32]Nollau P, Mayer BJ: Profiling the global tyrosine phosphorylation state by Src homology 2 domain binding. Proc Natl Acad Sci USA 2001, 98:13531-13536.
- [33]Stancato LF, Petricoin EF 3rd: Fingerprinting of signal transduction pathways using a combination of anti-phosphotyrosine immunoprecipitations and two-dimensional polycrylamide gel electrophoresis. Electrophoresis 2001, 22:2120-2124.
- [34]Shiio Y, Eisenman RN, Yi EC, Donohoe S, Goodlett DR, Aebersold R: Quantitative proteomic analysis of chromatin-associated factors. J Am Soc Mass Spectrom 2003, 14:696-703.
- [35]Truffa-Bachi P, Lefkovits I, Frey JR: Proteomic analysis of T cell activation in the presence of cyclosporin A: immunosuppressor and activator removal induces de novo protein synthesis. Mol Immunol 2000, 37:21-28.
- [36]Mascarell L, Frey JR, Michel F, Lefkovits I, Truffa-Bachi P: Increased protein synthesis after T cell activation in the presence of cyclosporin A. Transplantation 2000, 70:340-348.
- [37]Grolleau A, Bowman J, Pradet-Balade B, Puravs E, Hanash S, Garcia-Sanz JA, Beretta L: Global and specific translational control by rapamycin in T cells uncovered by microarrays and proteomics. J Biol Chem 2002, 277:22175-22184.
- [38]Liu BG, Cao YB, Cao YY, Zhang JD, An MM, Wang Y, Gao PH, Yan L, Xu Y, Jiang YY: Altered protein profile of lymphocytes in an antigen-specific model of colitis: a comparative proteomic study. Inflamm Res 2007, 56:377-384.
- [39]Kimura N, Shimada N, Fukuda M, Ishijima Y, Miyazaki H, Ishii A, Takagi Y, Ishikawa N: Regulation of cellular functions by nucleoside diphosphate kinase in mammals. J Bioenerg Biomembr 2000, 32:309-315.
- [40]Firestein R, Feuerstein N: Association of activating transcription factor 2 (ATF2) with the ubiquitin-conjugating enzyme hUBC9. Implication of the ubiquitin/proteasome pathway in regulation of ATF2 in T cells. J Biol Chem 1998, 273:5892-5902.
- [41]Orian A, Whiteside S, Israel A, Stancovski I, Schwartz AL, Ciechanover A: Ubiquitin-mediated processing of NF-kappa B transcriptional activator precursor p105. Reconstitution of a cell-free system and identification of the ubiquitin-protein ligase, E3, involved in conjugation. J Biol Chem 1995, 270:21707-21714.
- [42]Lominadze G, Rane MJ, Merchant M, Ca J, Ward RA, McLeish KR: Myeloid-related protein-14 is a p38 MAPK substrate in human neutrophils. J Immunol 2005, 174:7257-7267.
- [43]Shiohara M, Taniguchi S, Masumoto J, Yasui K, Koike K, Komiyama A, Sagara J: ASC, which is composed of a PYD and a CARD, is up-regulated by inflammation and apoptosis in human neutrophils. Biochem Biophys Res Commun 2002, 293:1314-1318.
- [44]Tanimoto Y, Kizaki H: Proteasome inhibitors block Ras/ERK signaling pathway resulting in the downregulation of Fas ligand expression during activation-induced cell death in T cells. J Biochem 2002, 131:319-326.
- [45]Zheng JZ, Zhang PH, Li LL, Ren LC, Liang PF, Huang XY: Proteomic study of peripheral blood lymphocytes of rabbits with severe burn and Pseudomonas aeruginosa sepsis. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 2009, 21:455-459.
- [46]Fan YH, Hu ZB, Li CY, Wang LE, Guo ZZ, Qiao YW, Zhang L, Zhang W, Mao L, Wei QY: In vitro expression levels of cell-cycle checkpoint proteins are associated with cellular DNA repair capacity in peripheral blood lymphocytes: a multivariate analysis. J Proteome Res 2007, 6:1560-1567.
- [47]Koo JH, Chae WJ, Choi JM, Nam HW, Morio T, Kim YS, Jang YS, Choi KY, Yang JJ, Lee SK: Proteomic analysis of resting and activated human CD8(+) T cells. J Microbiol Biotechnol 2006, 16:911-920.
- [48]Bian T, Yin KS, Jin SX, Zhang XL, Zhou JY, Ma XQ, Hu JJ, De W: Treatment of allergic airway inflammation and hyperresponsiveness by imiquimod modulating transcription factors T-bet and GATA-3. Chin Med J (Engl) 2006, 119:640-648.
- [49]Jeong HC, Lee SY, Lee EJ, Jung KH, Kang EH, Lee SY, Kim JH, Park EK, Lee SH, Uhm CS, Cho YJ, Shin C, Shim JJ, Kim HK, In KH, Kang KH, Yoo SH: Proteomic analysis of peripheral T-lymphocytes in patients with asthma. Chest 2007, 132:489-496.
- [50]Ko YC, Hsu WH, Chung JG, Dai MP, Ou CC, Wu WP: Proteomic analysis of CD4+ T-lymphocytes in patients with asthma between typical therapy (controlled) and no typical therapy (uncontrolled) level. Hum Exp Toxicol 2011, 30:541-549.
- [51]Aron Y, Busson M, Polla BS, Dusser D, Lockhart A, Swierczewski E, Favatier F: Analysis of hsp70 gene polymorphism in allergic asthma. Allergy 1999, 54:165-170.
- [52]Tong W, Luo W: Heat shock proteins’ mRNA expression in asthma. Respirology 2000, 5:227-230.
- [53]Katsumoto T, Mitsushima A, Kurimura T: The role of the vimentin intermediate filaments in rat 3Y1 cells elucidated by immunoelectron microscopy and computer-graphic reconstruction. Biol Cell 1990, 68:139-146.
- [54]Korfei M, Schmitt S, Ruppert C, Henneke I, Markart P, Loeh B, Mahavadi P, Wygrecka M, Klepetko W, Fink L, Bonniaud P, Preissner KT, Lochnit G, Schaefer L, Seegar W, Guenther A: Comparative proteomic analysis of lung tissue form patients with idiopathic pulmonary fibrosis (IPF) and lung transplant donor lungs. J Proteome Res 2011, 10:2185-2205.
- [55]Tallle C, Grootenboer-Mignot S, Boursier C, Michel L, Debray MP, Fagart J, Barrientos L, Mallleux A, Cigna N, Tubach F, Marchal-Somme J, Soler P, Chollet-Martin S, Crestant B: Identification of Periplakin as a new target for autoreactivity in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2011, 183:759-766.
- [56]Ruhrberg C, Hajibagheri MA, Parry DA, Watt FM: Periplakin, a novel component of cornified envelopes and desmosomes that belongs to the plakin family and forms complexes with envoplakin. J Cell Biol 1997, 139:1835-1849.
- [57]Long HA, Boczonadi V, McInroy L, Goldberg M, Maatta A: Periplakin-dependent re-organisation of keratin cytoskeleton and loss of collective migration in keratin-8-downregulated epithelial sheets. J Cell Sci 2006, 119:5147-5159.
- [58]van den Heuvel AP, de Vries-Smits AM, van Weeren PC, Dijkers PF, de Bruyn KM, Riedl JA, Burgering BM: Binding of protein kinase B to the plakin family member periplakin. J Cell Sci 2002, 115:3957-3966.
- [59]Beekman JM, Bakema JE, van de Winkel JG, Leusen JH: Direct interaction between FcgammaRI (CD64) and periplakin controls receptor endocytosis and ligand binding capacity. Proc Natl Acad Sci USA 2004, 101:10392-10397.
- [60]Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ: Cancer statistics. CA Cancer J Clin 2009, 59:225-249.
- [61]Cravatt BF, Simon GM, Yates JR: The biological impact of mass-spectrometry-based proteomics. Nature 2007, 450:991-1000.
- [62]Gstaiger M, Aebersold R: Applying mass spectrometry-based proteomics to genetics and network biology. Nat Rev Genet 2009, 10:617-627.
- [63]Domon B, Aebersold R: Mass spectrometry and protein analysis. Science 2006, 312:212-217.
- [64]Bonk T, Humeny A: MALDI-TOF-MS analysis of protein of protein and DNA. Neuroscientist 2001, 7:6-12.
- [65]Thiede B, Höhenwarter W, Krah A, Mattow J, Schmid M, Schmidt F, Jungblut PR: Peptide mass fingerprinting. Methods 2005, 35:237-247.
- [66]Haqqani AS, Kelly JF, Stanimirovic DB: Quantitative protein profiling by mass spectrometry using isotope-coded affinity tags. Methods Mol Biol 2008, 439:225-240.
- [67]Han DK, Eng J, Zhou H, Aebersold R: Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat Biotechnol 2001, 19:946-951.
- [68]Gygi SP, Rist B, Berber SA, Turecek F, Gelb MH, Aebersold R: Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 1999, 17:994-999.
- [69]Ivaldi C, Martin BR, Kieffer-Jaquinod S, Chapel A, Levade T, Garin J, Journet A: Proteomic analysis of S-acylated proteins in human B cells reveals palmitoylation of the immune regulators CD20 and CD23. PLoS One 2012, 7:e37187.