Journal of Neuroinflammation | |
Modeling leukocyte trafficking at the human blood-nerve barrier in vitro and in vivo geared towards targeted molecular therapies for peripheral neuroinflammation | |
Eroboghene E. Ubogu1  Eric S. Helton1  Chaoling Dong1  Steven P. Palladino1  Kelsey M. Greathouse1  | |
[1] Department of Neurology, Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, The University of Alabama at Birmingham, 1825 University Boulevard, Room 1131, Birmingham 35294-0017, AL, USA | |
关键词: Two-photon microscopy; Spontaneous autoimmune peripheral polyneuropathy; Neuropathic pain; Leukocyte trafficking; Intravital microscopy; Guillain-Barré syndrome; Experimental autoimmune neuritis; Chronic inflammatory demyelinating polyradiculoneuropathy; Blood-nerve barrier; | |
Others : 1235620 DOI : 10.1186/s12974-015-0469-3 |
|
received in 2015-05-25, accepted in 2015-12-24, 发布年份 2016 |
【 摘 要 】
Peripheral neuroinflammation is characterized by hematogenous mononuclear leukocyte infiltration into peripheral nerves. Despite significant clinical knowledge, advancements in molecular biology and progress in developing specific drugs for inflammatory disorders such as rheumatoid arthritis, inflammatory bowel disease, and multiple sclerosis, there are currently no specific therapies that modulate pathogenic peripheral nerve inflammation. Modeling leukocyte trafficking at the blood-nerve barrier using a reliable human in vitro model and potential intravital microscopy techniques in representative animal models guided by human observational data should facilitate the targeted modulation of the complex inflammatory cascade needed to develop safe and efficacious therapeutics for immune-mediated neuropathies and chronic neuropathic pain.
【 授权许可】
2016 Greathouse et al.
Files | Size | Format | View |
---|---|---|---|
Fig. 3. | 62KB | Image | download |
Fig. 2. | 51KB | Image | download |
Fig. 1. | 188KB | Image | download |
Fig. 3. | 62KB | Image | download |
Fig. 2. | 51KB | Image | download |
Fig. 1. | 188KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 1.
Fig. 2.
Fig. 3.
【 参考文献 】
- [1]Bennett GJ: Neuropathic pain: new insights, new interventions. Hosp Pract (1995) 1998, 33(10):95-8.
- [2]Dworkin RH: An overview of neuropathic pain: syndromes, symptoms, signs, and several mechanisms. Clin J Pain 2002, 18(6):343-9.
- [3]Bennett GJ, Xie YK: A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 1988, 33(1):87-107.
- [4]McCarberg BH, Billington R: Consequences of neuropathic pain: quality-of-life issues and associated costs. Am J Manag Care 2006, 12(9 Suppl):S263-8.
- [5]Kanda T: Biology of the blood-nerve barrier and its alteration in immune mediated neuropathies. J Neurol Neurosurg Psychiatry 2013, 84(2):208-12.
- [6]Ubogu EE: The molecular and biophysical characterization of the human blood-nerve barrier: current concepts. J Vasc Res 2013, 50(4):289-303.
- [7]Mizisin AP, Weerasuriya A: Homeostatic regulation of the endoneurial microenvironment during development, aging and in response to trauma, disease and toxic insult. Acta Neuropathol 2011, 121(3):291-312.
- [8]Giannini C, Dyck PJ: Ultrastructural morphometric abnormalities of sural nerve endoneurial microvessels in diabetes mellitus. Ann Neurol 1994, 36(3):408-15.
- [9]Kieseier BC, Kiefer R, Gold R, Hemmer B, Willison HJ, Hartung HP: Advances in understanding and treatment of immune-mediated disorders of the peripheral nervous system. Muscle Nerve 2004, 30(2):131-56.
- [10]Malik RA, Newrick PG, Sharma AK, Jennings A, Ah-See AK, Mayhew TM, et al.: Microangiopathy in human diabetic neuropathy: relationship between capillary abnormalities and the severity of neuropathy. Diabetologia 1989, 32(2):92-102.
- [11]Malik RA, Veves A, Masson EA, Sharma AK, Ah-See AK, Schady W, et al.: Endoneurial capillary abnormalities in mild human diabetic neuropathy. J Neurol Neurosurg Psychiatry 1992, 55(7):557-61.
- [12]Meyer zu Horste G, Hartung HP, Kieseier BC: From bench to bedside—experimental rationale for immune-specific therapies in the inflamed peripheral nerve. Nat Clin Pract Neurol 2007, 3(4):198-211.
- [13]Bouchard C, Lacroix C, Plante V, Adams D, Chedru F, Guglielmi JM, et al.: Clinicopathologic findings and prognosis of chronic inflammatory demyelinating polyneuropathy. Neurology 1999, 52(3):498-503.
- [14]Hartung HP, Willison HJ, Kieseier BC: Acute immunoinflammatory neuropathy: update on Guillain-Barre syndrome. Curr Opin Neurol 2002, 15(5):571-7.
- [15]Rizzuto N, Morbin M, Cavallaro T, Ferrari S, Fallahi M, Galiazzo RS: Focal lesions area feature of chronic inflammatory demyelinating polyneuropathy (CIDP). Acta Neuropathol 1998, 96(6):603-9.
- [16]Old EA, Nadkarni S, Grist J, Gentry C, Bevan S, Kim KW, et al.: Monocytes expressing CX3CR1 orchestrate the development of vincristine-induced pain. J Clin Invest 2014, 124(5):2023-36.
- [17]Padi SS, Shi XQ, Zhao YQ, Ruff MR, Baichoo N, Pert CB, et al.: Attenuation of rodent neuropathic pain by an orally active peptide, RAP-103, which potently blocks CCR2- and CCR5-mediated monocyte chemotaxis and inflammation. Pain 2012, 153(1):95-106.
- [18]Liou JT, Lee CM, Lin YC, Chen CY, Liao CC, Lee HC, et al.: P-selectin is required for neutrophils and macrophage infiltration into injured site and contributes to generation of behavioral hypersensitivity following peripheral nerve injury in mice. Pain 2013, 154(10):2150-9.
- [19]Decosterd I, Woolf CJ: Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 2000, 87(2):149-58.
- [20]Perkins N, Tracey D: Hyperalgesia due to nerve injury: role of neutrophils. Neuroscience 2000, 101(3):745-57.
- [21]Abbadie C, Lindia JA, Cumiskey AM, Peterson LB, Mudgett JS, Bayne EK, et al.: Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2. Proc Natl Acad Sci U S A 2003, 100(13):7947-52.
- [22]Tanaka T, Minami M, Nakagawa T, Satoh M: Enhanced production of monocyte chemoattractant protein-1 in the dorsal root ganglia in a rat model of neuropathic pain: possible involvement in the development of neuropathic pain. Neurosci Res 2004, 48(4):463-9.
- [23]Van Steenwinckel J, Auvynet C, Sapienza A, Reaux-Le Goazigo A, Combadiere C, Melik PS: Stromal cell-derived CCL2 drives neuropathic pain states through myeloid cell infiltration in injured nerve. Brain Behav Immun 2015, 45:198-210.
- [24]Kleinschnitz C, Hofstetter HH, Meuth SG, Braeuninger S, Sommer C, Stoll G: T cell infiltration after chronic constriction injury of mouse sciatic nerve is associated with interleukin-17 expression. Exp Neurol 2006, 200(2):480-5.
- [25]Kim CF, Moalem-Taylor G: Interleukin-17 contributes to neuroinflammation and neuropathic pain following peripheral nerve injury in mice. J Pain 2011, 12(3):370-83.
- [26]Austin PJ, Kim CF, Perera CJ, Moalem-Taylor G: Regulatory T cells attenuate neuropathic pain following peripheral nerve injury and experimental autoimmune neuritis. Pain 2012, 153(9):1916-31.
- [27]Olsson Y: Microenvironment of the peripheral nervous system under normal and pathological conditions. Crit Rev Neurobiol 1990, 5(3):265-311.
- [28]Reina MA, Lopez A, Villanueva MC, de Andres JA, Leon GI: Morphology of peripheral nerves, their sheaths, and their vascularization. Rev Esp Anestesiol Reanim 2000, 47(10):464-75.
- [29]Reina MA, Lopez A, Villanueva MC, De Andres JA, Maches F: The blood-nerve barrier in peripheral nerves. Rev Esp Anestesiol Reanim 2003, 50(2):80-6.
- [30]Olsson Y: Studies on vascular permeability in peripheral nerves. I. Distribution of circulating fluorescent serum albumin in normal, crushed and sectioned rat sciatic nerve. Acta Neuropathol 1966, 7(1):1-15.
- [31]Olsson Y: Topographical differences in the vascular permeability of the peripheral nervous system. Acta Neuropathol 1968, 10(1):26-33.
- [32]Yosef N, Xia R, Ubogu E: Development and characterization of a novel human in vitro blood-nerve barrier model using primary endoneurial endothelial cells. J Neuropathol Exp Neurol 2010, 69(1):82-97.
- [33]Yuan F, Yosef N, Lakshmana Reddy C, Huang A, Chiang SC, Tithi HR, et al.: CCR2 gene deletion and pharmacologic blockade ameliorate a severe murine experimental autoimmune neuritis model of Guillain-Barre syndrome. PLoS One 2014, 9(3):e90463.
- [34]Hultstrom D, Malmgren L, Gilstring D, Olsson Y: FITC-Dextrans as tracers for macromolecular movements in the nervous system. A freeze-drying method for dextrans of various molecular sizes injected into normal animals. Acta Neuropathol 1983, 59(1):53-62.
- [35]Olsson Y: Studies on vascular permeability in peripheral nerves. IV. Distribution of intravenously injected protein tracers in the peripheral nervous system of various species. Acta Neuropathol 1971, 17(2):114-26.
- [36]Yosef N, Ubogu EE: An immortalized human blood-nerve barrier endothelial cell line for in vitro permeability studies. Cell Mol Neurobiol 2013, 33(2):175-86.
- [37]Yosef N, Ubogu EE: GDNF restores human blood-nerve barrier function via RET tyrosine kinase-mediated cytoskeletal reorganization. Microvasc Res 2012, 83(3):298-310.
- [38]Reddy CL, Yosef N, Ubogu EE: VEGF-A165 potently induces human blood-nerve barrier endothelial cell proliferation, angiogenesis, and wound healing in vitro. Cell Mol Neurobiol 2013, 33(6):789-801.
- [39]Ley K, Laudanna C, Cybulsky MI, Nourshargh S: Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 2007, 7(9):678-89.
- [40]Yosef N, Ubogu EE: alpha(M)beta(2)-integrin-intercellular adhesion molecule-1 interactions drive the flow-dependent trafficking of Guillain-Barre syndrome patient derived mononuclear leukocytes at the blood-nerve barrier in vitro. J Cell Physiol 2012, 227(12):3857-75.
- [41]Campbell JJ, Hedrick J, Zlotnik A, Siani MA, Thompson DA, Butcher EC: Chemokines and the arrest of lymphocytes rolling under flow conditions. Science 1998, 279(5349):381-4.
- [42]Schreiber TH, Shinder V, Cain DW, Alon R, Sackstein R: Shear flow-dependent integration of apical and subendothelial chemokines in T-cell transmigration: implications for locomotion and the multistep paradigm. Blood 2007, 109(4):1381-6.
- [43]Santaguida S, Janigro D, Hossain M, Oby E, Rapp E, Cucullo L: Side by side comparison between dynamic versus static models of blood-brain barrier in vitro: a permeability study. Brain Res 2006, 1109(1):1-13.
- [44]Cucullo L, Marchi N, Hossain M, Janigro D: A dynamic in vitro BBB model for the study of immune cell trafficking into the central nervous system. J Cereb Blood Flow Metab 2011, 31(2):767-77.
- [45]Bianchi E, Molteni R, Pardi R, Dubini G: Microfluidics for in vitro biomimetic shear stress-dependent leukocyte adhesion assays. J Biomech 2013, 46(2):276-83.
- [46]Kjellstrom BT, Ortenwall P, Risberg B: Comparison of oxidative metabolism in vitro in endothelial cells from different species and vessels. J Cell Physiol 1987, 132(3):578-80.
- [47]Bell M, Weddell A: A descriptive study of the blood vessels of the sciatic nerve in the rat, man and other mammals. Brain 1984, 107(Pt 3):871-98.
- [48]Aird W: Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 2007, 100(2):158-73.
- [49]Aird W: Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res 2007, 100(2):174-90.
- [50]Yano K, Gale D, Massberg S, Cheruvu P, Monahan-Earley R, Morgan E, et al.: Phenotypic heterogeneity is an evolutionarily conserved feature of the endothelium. Blood 2007, 109(2):613-5.
- [51]Allt G, Lawrenson J: The blood-nerve barrier: enzymes, transporters and receptors—a comparison with the blood-brain barrier. Brain Res Bull 2000, 52(1):1-12.
- [52]Orte C, Lawrenson J, Finn T, Reid A, Allt G: A comparison of blood-brain barrier and blood-nerve barrier endothelial cell markers. Anat Embryol (Berl) 1999, 199(6):509-17.
- [53]Ubogu EE: Inflammatory neuropathies: pathology, molecular markers and targets for specific therapeutic intervention. Acta Neuropathol 2015, 130(4):445-68.
- [54]Alon R, Ley K: Cells on the run: shear-regulated integrin activation in leukocyte rolling and arrest on endothelial cells. Curr Opin Cell Biol 2008, 20(5):525-32.
- [55]Gopalan PK, Jones DA, McIntire LV, Smith CW: Cell adhesion under hydrodynamic flow conditions. Curr Protoc Immunol 2001, Chapter 7:Unit 7 29.
- [56]Man S, Tucky B, Bagheri N, Li X, Kochar R, Ransohoff RM: alpha4 Integrin/FN-CS1 mediated leukocyte adhesion to brain microvascular endothelial cells under flow conditions. J Neuroimmunol 2009, 210(1-2):92-9.
- [57]Shulman Z, Alon R: Chapter 14. Real-time in vitro assays for studying the role of chemokines in lymphocyte transendothelial migration under physiologic flow conditions. Methods Enzymol 2009, 461:311-32.
- [58]Ubogu EE: Chemokine-dependent signaling pathways in the peripheral nervous system. Methods Mol Biol 2013, 1013:17-30.
- [59]Ubogu EE: Chemokine receptors as specific anti-inflammatory targets in peripheral nerves. Endocr Metab Immune Disord Drug Targets 2011, 11(2):141-53.
- [60]Kiefer R, Kieseier BC, Stoll G, Hartung HP: The role of macrophages in immune-mediated damage to the peripheral nervous system. Prog Neurobiol 2001, 64(2):109-27.
- [61]Xia RH, Yosef N, Ubogu EE: Selective expression and cellular localization of pro-inflammatory chemokine ligand/receptor pairs in the sciatic nerves of a severe murine experimental autoimmune neuritis model of Guillain-Barre syndrome. Neuropathol Appl Neurobiol 2010, 36(5):388-98.
- [62]Langert KA, Von Zee CL, Stubbs EB Jr: Cdc42 GTPases facilitate TNF-alpha-mediated secretion of CCL2 from peripheral nerve microvascular endoneurial endothelial cells. J Peripher Nerv Syst 2013, 18(3):199-208.
- [63]Langert KA, Von Zee CL, Stubbs EB Jr: Tumour necrosis factor alpha enhances CCL2 and ICAM-1 expression in peripheral nerve microvascular endoneurial endothelial cells. ASN Neuro 2013, 5(1):e00104.
- [64]Atherton A, Born GV: Quantitative investigations of the adhesiveness of circulating polymorphonuclear leucocytes to blood vessel walls. J Physiol 1972, 222(2):447-74.
- [65]Masedunskas A, Milberg O, Porat-Shliom N, Sramkova M, Wigand T, Amornphimoltham P, et al.: Intravital microscopy: a practical guide on imaging intracellular structures in live animals. Bioarchitecture 2012, 2(5):143-57.
- [66]Weigert R, Porat-Shliom N, Amornphimoltham P: Imaging cell biology in live animals: ready for prime time. J Cell Biol 2013, 201(7):969-79.
- [67]Gavins FN: Intravital microscopy: new insights into cellular interactions. Curr Opin Pharmacol 2012, 12(5):601-7.
- [68]Mempel TR, Scimone ML, Mora JR, von Andrian UH: In vivo imaging of leukocyte trafficking in blood vessels and tissues. Curr Opin Immunol 2004, 16(4):406-17.
- [69]Pai S, Danne KJ, Qin J, Cavanagh LL, Smith A, Hickey MJ, et al.: Visualizing leukocyte trafficking in the living brain with 2-photon intravital microscopy. Front Cell Neurosci 2012, 6:67.
- [70]Niesner R, Andresen V, Neumann J, Spiecker H, Gunzer M: The power of single and multibeam two-photon microscopy for high-resolution and high-speed deep tissue and intravital imaging. Biophys J 2007, 93(7):2519-29.
- [71]Ricard C, Debarbieux FC: Six-color intravital two-photon imaging of brain tumors and their dynamic microenvironment. Front Cell Neurosci 2014, 8:57.
- [72]Reichenbach ZW, Li H, Gaughan JP, Elliott M, Tuma R: IV and IP administration of rhodamine in visualization of WBC-BBB interactions in cerebral vessels. Microsc Res Tech 2015, 78(10):894-9.
- [73]Denk W, Strickler JH, Webb WW: Two-photon laser scanning fluorescence microscopy. Science 1990, 248(4951):73-6.
- [74]Zoumi A, Yeh A, Tromberg BJ: Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc Natl Acad Sci U S A 2002, 99(17):11014-9.
- [75]Herz J, Paterka M, Niesner RA, Brandt AU, Siffrin V, Leuenberger T, et al.: In vivo imaging of lymphocytes in the CNS reveals different behaviour of naive T cells in health and autoimmunity. J Neuroinflammation 2011, 8:131. BioMed Central Full Text
- [76]Cahalan MD, Parker I, Wei SH, Miller MJ: Two-photon tissue imaging: seeing the immune system in a fresh light. Nat Rev Immunol 2002, 2(11):872-80.
- [77]von Andrian UH, Mempel TR: Homing and cellular traffic in lymph nodes. Nat Rev Immunol 2003, 3(11):867-78.
- [78]Von Andrian UH, Hansell P, Chambers JD, Berger EM, Torres Filho I, Butcher EC, et al.: L-selectin function is required for beta 2-integrin-mediated neutrophil adhesion at physiological shear rates in vivo. Am J Physiol 1992, 263(4 Pt 2):H1034-44.
- [79]Piccio L, Rossi B, Scarpini E, Laudanna C, Giagulli C, Issekutz AC, et al.: Molecular mechanisms involved in lymphocyte recruitment in inflamed brain microvessels: critical roles for P-selectin glycoprotein ligand-1 and heterotrimeric G(i)-linked receptors. J Immunol 2002, 168(4):1940-9.
- [80]Handel TM, Johnson Z, Rodrigues DH, Dos Santos AC, Cirillo R, Muzio V, et al.: An engineered monomer of CCL2 has anti-inflammatory properties emphasizing the importance of oligomerization for chemokine activity in vivo. J Leukoc Biol 2008, 84(4):1101-8.
- [81]Coisne C, Mao W, Engelhardt B: Cutting edge: natalizumab blocks adhesion but not initial contact of human T cells to the blood-brain barrier in vivo in an animal model of multiple sclerosis. J Immunol 2009, 182(10):5909-13.
- [82]Jain P, Coisne C, Enzmann G, Rottapel R, Engelhardt B: Alpha4beta1 integrin mediates the recruitment of immature dendritic cells across the blood-brain barrier during experimental autoimmune encephalomyelitis. J Immunol 2010, 184(12):7196-206.
- [83]Sathiyanadan K, Coisne C, Enzmann G, Deutsch U, Engelhardt B: PSGL-1 and E/P-selectins are essential for T-cell rolling in inflamed CNS microvessels but dispensable for initiation of EAE. Eur J Immunol 2014, 44(8):2287-94.
- [84]Zhou H, Lapointe BM, Clark SR, Zbytnuik L, Kubes P: A requirement for microglial TLR4 in leukocyte recruitment into brain in response to lipopolysaccharide. J Immunol 2006, 177(11):8103-10.
- [85]Ramirez SH, Hasko J, Skuba A, Fan S, Dykstra H, McCormick R, et al.: Activation of cannabinoid receptor 2 attenuates leukocyte-endothelial cell interactions and blood-brain barrier dysfunction under inflammatory conditions. J Neurosci 2012, 32(12):4004-16.
- [86]Wu F, Zhao Y, Jiao T, Shi D, Zhu X, Zhang M, et al.: CXCR2 is essential for cerebral endothelial activation and leukocyte recruitment during neuroinflammation. J Neuroinflammation 2015, 12:98. BioMed Central Full Text
- [87]Teixeira MM, Vilela MC, Soriani FM, Rodrigues DH, Teixeira AL: Using intravital microscopy to study the role of chemokines during infection and inflammation in the central nervous system. J Neuroimmunol 2010, 224(1-2):62-5.
- [88]Zhang M, Sun D, Liu G, Wu H, Zhou H, Shi M: Real-time in vivo imaging reveals the ability of neutrophils to remove Cryptococcus neoformans directly from the brain vasculature. J Leukoc Biol 2015.
- [89]Schwarzmaier SM, Zimmermann R, McGarry NB, Trabold R, Kim SW, Plesnila N: In vivo temporal and spatial profile of leukocyte adhesion and migration after experimental traumatic brain injury in mice. J Neuroinflammation 2013, 10:32. BioMed Central Full Text
- [90]Zenaro E, Rossi B, Angiari S, Constantin G: Use of imaging to study leukocyte trafficking in the central nervous system. Immunol Cell Biol 2013, 91(4):271-80.