期刊论文详细信息
Fibrogenesis & Tissue Repair
Deletion of Wntless in myeloid cells exacerbates liver fibrosis and the ductular reaction in chronic liver injury
Elizabeth E. Powell2  Antje Blumenthal5  Matthew J. Sweet1  Richard A. Lang6  Kelli MacDonald4  Muralidhara Rao Maradana3  Michelle Melino4  Weng-Yew Wong2  Gregory C. Miller2  Victoria L. Gadd2  Andrew D. Clouston2  Katharine M. Irvine2 
[1] Institute for Molecular Bioscience and the Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Australia;Centre for Liver Disease Research, School of Medicine, The University of Queensland, Translational Research Institute, 37 Kent St, Brisbane 4102, Australia;The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia;QIMR Berghofer Medical Research Institute, Brisbane, Australia;Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia;Visual Systems Group, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
关键词: CDE;    TAA;    Matrix remodelling;    Macrophages;    Ductular reaction;    Liver fibrosis;   
Others  :  1229887
DOI  :  10.1186/s13069-015-0036-7
 received in 2015-06-09, accepted in 2015-09-17,  发布年份 2015
PDF
【 摘 要 】

Background

Macrophages play critical roles in liver regeneration, fibrosis development and resolution. They are among the first responders to liver injury and are implicated in orchestrating the fibrogenic response via multiple mechanisms. Macrophages are also intimately associated with the activated hepatic progenitor cell (HPC) niche or ductular reaction that develops in parallel with fibrosis. Among the many macrophage-derived mediators implicated in liver disease progression, a key role for macrophage-derived Wnt proteins in driving pro-regenerative HPC activation towards a hepatocellular fate has been suggested. Wnt proteins, in general, however, have been associated with both pro- and anti-fibrogenic activities in the liver and other organs. We investigated the role of macrophage-derived Wnt proteins in fibrogenesis and HPC activation in murine models of chronic liver disease by conditionally deleting Wntless expression, which encodes a chaperone essential for Wnt protein secretion, in LysM-Cre-expressing myeloid cells (LysM-Wls mice).

Results

Fibrosis and HPC activation were exacerbated in LysM-Wls mice compared to littermate controls, in the absence of an apparent increase in myofibroblast activation or interstitial collagen mRNA expression, in both the TAA and CDE models of chronic liver disease. Increased Epcam mRNA levels paralleled the increased HPC activation and more mature ductular reactions, in LysM-Wls mice. Increased Epcam expression in LysM-Wls HPC was also observed, consistent with a more cholangiocytic phenotype. No differences in the mRNA expression levels of key pro-inflammatory and pro-fibrotic cytokines or the macrophage-derived HPC mitogen, Tweak, were observed. LysM-Wls mice exhibited increased expression of Timp1, encoding the key Mmp inhibitor Timp1 that blocks interstitial collagen degradation, and, in the TAA model, reduced expression of the anti-fibrotic matrix metalloproteinases, Mmp12 and Mmp13, suggesting a role for macrophage-derived Wnt proteins in restraining fibrogenesis during ongoing liver injury.

Conclusion

In summary, these data suggest that macrophage-derived Wnt proteins possess anti-fibrogenic potential in chronic liver disease, which may be able to be manipulated for therapeutic benefit.

【 授权许可】

   
2015 Irvine et al.

【 预 览 】
附件列表
Files Size Format View
20151103030719248.pdf 2760KB PDF download
Fig. 7. 57KB Image download
Fig. 6. 56KB Image download
Fig. 5. 92KB Image download
Fig. 4. 77KB Image download
Fig. 3. 117KB Image download
Fig. 2. 63KB Image download
Fig. 1. 85KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

【 参考文献 】
  • [1]Iredale JP, Thompson A, Henderson NC. Extracellular matrix degradation in liver fibrosis: biochemistry and regulation. Biochim Biophys Acta. 2013; 1832(7):876-83.
  • [2]Williams MJ, Clouston AD, Forbes SJ. Ductular reactions and fibrosis: what is the link and can we break it? Gastroenterology. 2013 (Submitted).
  • [3]Gouw AS, Clouston AD, Theise ND. Ductular reactions in human liver: diversity at the interface. Hepatology. 2011; 54(5):1853-63.
  • [4]Williams MJ, Clouston AD, Forbes SJ. Links between hepatic fibrosis, ductular reaction, and progenitor cell expansion. Gastroenterology. 2014; 146(2):349-56.
  • [5]Espanol-Suner R, Carpentier R, Van HN, Legry V, Achouri Y, Cordi S, et al. Liver progenitor cells yield functional hepatocytes in response to chronic liver injury in mice. Gastroenterology. 2012;143(6):1564–75. doi:10.1053/j.gastro.2012.08.024.
  • [6]Malato Y, Naqvi S, Schurmann N, Ng R, Wang B, Zape J et al.. Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration. J Clin Invest. 2011; 121(12):4850-60.
  • [7]Lu WY, Bird TG, Boulter L, Tsuchiya A, Cole AM, Hay T et al.. Hepatic progenitor cells of biliary origin with liver repopulation capacity. Nat Cell Biol. 2015; 17(8):971-83.
  • [8]Gadd VL, Melino M, Roy S, Horsfall L, O’Rourke P, Williams MR et al.. Portal, but not lobular, macrophages express MMP-9: association with the ductular reaction and fibrosis in chronic HCV. Liver Int. 2013; 33(4):569-79.
  • [9]Gadd VL, Skoien R, Powell EE, Fagan KJ, Winterford C, Horsfall L et al.. The portal inflammatory infiltrate and ductular reaction in human non-alcoholic fatty liver disease. Hepatology. 2013.
  • [10]Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S et al.. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest. 2005; 115(1):56-65.
  • [11]Lorenzini S, Bird TG, Boulter L, Bellamy C, Samuel K, Aucott R et al.. Characterisation of a stereotypical cellular and extracellular adult liver progenitor cell niche in rodents and diseased human liver. Gut. 2010; 59(5):645-54.
  • [12]Kantari-Mimoun C, Castells M, Klose R, Meinecke AK, Lemberger UJ, Rautou PE et al.. Resolution of liver fibrosis requires myeloid cell-driven sinusoidal angiogenesis. Hepatology. 2014.
  • [13]Thomas JA, Pope C, Wojtacha D, Robson AJ, Gordon-Walker TT, Hartland S et al.. Macrophage therapy for murine liver fibrosis recruits host effector cells improving fibrosis, regeneration, and function. Hepatology. 2011; 53(6):2003-15.
  • [14]Boulter L, Govaere O, Bird TG, Radulescu S, Ramachandran P, Pellicoro A et al.. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat Med. 2012; 18(4):572-9.
  • [15]Bird TG, Lu WY, Boulter L, Gordon-Keylock S, Ridgway RA, Williams MJ et al.. Bone marrow injection stimulates hepatic ductular reactions in the absence of injury via macrophage-mediated TWEAK signaling. Proc Natl Acad Sci U S A. 2013; 110(16):6542-7.
  • [16]Van HN, Lanthier N, Espanol SR, Abarca QJ, van Rooijen N, Leclercq I. Kupffer cells influence parenchymal invasion and phenotypic orientation, but not the proliferation, of liver progenitor cells in a murine model of liver injury. Am J Pathol. 2011; 179(4):1839-50.
  • [17]Spee B, Carpino G, Schotanus BA, Katoonizadeh A, Vander BS, Gaudio E et al.. Characterisation of the liver progenitor cell niche in liver diseases: potential involvement of Wnt and Notch signalling. Gut. 2010; 59(2):247-57.
  • [18]Nejak-Bowen KN, Monga SP. Beta-catenin signaling, liver regeneration and hepatocellular cancer: sorting the good from the bad. Semin Cancer Biol. 2011; 21(1):44-58.
  • [19]Boulter L, Guest RV, Kendall TJ, Wilson DH, Wojtacha D, Robson AJ et al.. WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited. J Clin Invest. 2015; 125(3):1269-85.
  • [20]Yeoh GC, Ernst M, Rose-John S, Akhurst B, Payne C, Long S et al.. Opposing roles of gp130-mediated STAT-3 and ERK-1/2 signaling in liver progenitor cell migration and proliferation. Hepatology. 2007; 45(2):486-94.
  • [21]Subrata LS, Lowes KN, Olynyk JK, Yeoh GC, Quail EA, Abraham LJ. Hepatic expression of the tumor necrosis factor family member lymphotoxin-beta is regulated by interleukin (IL)-6 and IL-1beta: transcriptional control mechanisms in oval cells and hepatoma cell lines. Liver Int. 2005; 25(3):633-46.
  • [22]Knight B, Yeoh GC, Husk KL, Ly T, Abraham LJ, Yu C et al.. Impaired preneoplastic changes and liver tumor formation in tumor necrosis factor receptor type 1 knockout mice. J Exp Med. 2000; 192(12):1809-18.
  • [23]Knight B, Lim R, Yeoh GC, Olynyk JK. Interferon-gamma exacerbates liver damage, the hepatic progenitor cell response and fibrosis in a mouse model of chronic liver injury. J Hepatol. 2007; 47(6):826-33.
  • [24]Tirnitz-Parker JE, Viebahn CS, Jakubowski A, Klopcic BR, Olynyk JK, Yeoh GC et al.. Tumor necrosis factor-like weak inducer of apoptosis is a mitogen for liver progenitor cells. Hepatology. 2010; 52(1):291-302.
  • [25]Paku S, Schnur J, Nagy P, Thorgeirsson SS. Origin and structural evolution of the early proliferating oval cells in rat liver. Am J Pathol. 2001; 158(4):1313-23.
  • [26]Kallis YN, Robson AJ, Fallowfield JA, Thomas HC, Alison MR, Wright NA et al.. Remodelling of extracellular matrix is a requirement for the hepatic progenitor cell response. Gut. 2011; 60(4):525-33.
  • [27]Wang S, Song K, Srivastava R, Dong C, Go GW, Li N et al.. Nonalcoholic fatty liver disease induced by noncanonical Wnt and its rescue by Wnt3a. FASEB J. 2015; 29(8):3436-45.
  • [28]Monga SP. Role and regulation of beta-catenin signaling during physiological liver growth. Gene Expr. 2014; 16(2):51-62.
  • [29]Apte U, Singh S, Zeng G, Cieply B, Virji MA, Wu T et al.. Beta-catenin activation promotes liver regeneration after acetaminophen-induced injury. Am J Pathol. 2009; 175(3):1056-65.
  • [30]Apte U, Thompson MD, Cui S, Liu B, Cieply B, Monga SP. Wnt/beta-catenin signaling mediates oval cell response in rodents. Hepatology. 2008; 47(1):288-95.
  • [31]Hu M, Kurobe M, Jeong YJ, Fuerer C, Ghole S, Nusse R et al.. Wnt/beta-catenin signaling in murine hepatic transit amplifying progenitor cells. Gastroenterology. 2007; 133(5):1579-91.
  • [32]Williams JM, Oh SH, Jorgensen M, Steiger N, Darwiche H, Shupe T et al.. The role of the Wnt family of secreted proteins in rat oval ‘stem’ cell-based liver regeneration: Wnt1 drives differentiation. Am J Pathol. 2010; 176(6):2732-42.
  • [33]Itoh T, Kamiya Y, Okabe M, Tanaka M, Miyajima A. Inducible expression of Wnt genes during adult hepatic stem/progenitor cell response. FEBS Lett. 2009; 583(4):777-81.
  • [34]Thompson MD, Awuah P, Singh S, Monga SP. Disparate cellular basis of improved liver repair in beta-catenin-overexpressing mice after long-term exposure to 3,5-diethoxycarbonyl-1,4-dihydrocollidine. Am J Pathol. 2010; 177(4):1812-22.
  • [35]Akhmetshina A, Palumbo K, Dees C, Bergmann C, Venalis P, Zerr P et al.. Activation of canonical Wnt signalling is required for TGF-beta-mediated fibrosis. Nat Commun. 2012; 3:735.
  • [36]Henderson WR, Chi EY, Ye X, Nguyen C, Tien YT, Zhou B et al.. Inhibition of Wnt/beta-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc Natl Acad Sci U S A. 2010; 107(32):14309-14.
  • [37]Beyer C, Schramm A, Akhmetshina A, Dees C, Kireva T, Gelse K et al.. beta-catenin is a central mediator of pro-fibrotic Wnt signaling in systemic sclerosis. Ann Rheum Dis. 2012; 71(5):761-7.
  • [38]Hao S, He W, Li Y, Ding H, Hou Y, Nie J et al.. Targeted inhibition of beta-catenin/CBP signaling ameliorates renal interstitial fibrosis. J Am Soc Nephrol. 2011; 22(9):1642-53.
  • [39]Yang J, Mowry LE, Nejak-Bowen KN, Okabe H, Diegel CR, Lang RA et al.. Beta-catenin signaling in murine liver zonation and regeneration: a Wnt-Wnt situation! Hepatology. 2014; 60(3):964-76.
  • [40]Carpenter AC, Rao S, Wells JM, Campbell K, Lang RA. Generation of mice with a conditional null allele for Wntless. Genesis. 2010; 48(9):554-8.
  • [41]Clausen BE, Burkhardt C, Reith W, Renkawitz R, Forster I. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res. 1999; 8(4):265-77.
  • [42]Pradere JP, Kluwe J, De Minicis S, Jiao JJ, Gwak GY, Dapito DH et al.. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology. 2013; 58(4):1461-73.
  • [43]Karsdal MA, Manon-Jensen T, Genovese F, Kristensen JH, Nielsen MJ, Sand JM et al.. Novel insights into the function and dynamics of extracellular matrix in liver fibrosis. Am J Physiol Gastrointest Liver Physiol. 2015; 308(10):G807-30.
  • [44]Wang Q, Usinger W, Nichols B, Gray J, Xu L, Seeley TW et al.. Cooperative interaction of CTGF and TGF-beta in animal models of fibrotic disease. Fibrogenesis Tissue Repair. 2011; 4(1):4. BioMed Central Full Text
  • [45]Dolle L, Theise ND, Schmelzer E, Boulter L, Gires O, van Grunsven LA. EpCAM and the biology of hepatic stem/progenitor cells. Am J Physiol Gastrointest Liver Physiol. 2015; 308(4):G233-G50.
  • [46]Okabe M, Tsukahara Y, Tanaka M, Suzuki K, Saito S, Kamiya Y et al.. Potential hepatic stem cells reside in EpCAM+ cells of normal and injured mouse liver. Development. 2009; 136(11):1951-60.
  • [47]Wynn TA, Barron L. Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis. 2010; 30(3):245-57.
  • [48]Akhurst B, Croager EJ, Farley-Roche CA, Ong JK, Dumble ML, Knight B et al.. A modified choline-deficient, ethionine-supplemented diet protocol effectively induces oval cells in mouse liver. Hepatology. 2001; 34(3):519-22.
  • [49]Karlmark KR, Zimmermann HW, Roderburg C, Gassler N, Wasmuth HE, Luedde T et al.. The fractalkine receptor CXCR1 protects against liver fibrosis by controlling differentiation and survival of infiltrating hepatic monocytes. Hepatology. 2010; 52(5):1769-82.
  • [50]Dal-Secco D, Wang J, Zeng Z, Kolaczkowska E, Wong CH, Petri B et al.. A dynamic spectrum of monocytes arising from the in situ reprogramming of CCR2+ monocytes at a site of sterile injury. J Exp Med. 2015; 212(4):447-56.
  • [51]Ramachandran P, Iredale JP. Macrophages: central regulators of hepatic fibrogenesis and fibrosis resolution. J Hepatol. 2012.
  • [52]Ramachandran P, Pellicoro A, Vernon MA, Boulter L, Aucott RL, Ali A et al.. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc Natl Acad Sci U S A. 2012; 109(46):E3186-95.
  • [53]Huch M, Dorrell C, Boj SF, van EJH, Li VS, van dWM et al.. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature. 2013; 494(7436):247-50.
  • [54]Yimlamai D, Christodoulou C, Galli GG, Yanger K, Pepe-Mooney B, Gurung B et al.. Hippo pathway activity influences liver cell fate. Cell. 2014; 157(6):1324-38.
  • [55]Michalopoulos GK, Barua L, Bowen WC. Transdifferentiation of rat hepatocytes into biliary cells after bile duct ligation and toxic biliary injury. Hepatology. 2005; 41(3):535-44.
  • [56]Wang B, Zhao L, Fish M, Logan CY, Nusse R. Self-renewing diploid Axin2(+) cells fuel homeostatic renewal of the liver. Nature. 2015; 524(7564):180-5.
  • [57]Wang EY, Yeh SH, Tsai TF, Huang HP, Jeng YM, Lin WH et al.. Depletion of beta-catenin from mature hepatocytes of mice promotes expansion of hepatic progenitor cells and tumor development. Proc Natl Acad Sci U S A. 2011; 108(45):18384-9.
  • [58]Winkler T, Mahoney EJ, Sinner D, Wylie CC, Dahia CL. Wnt signaling activates Shh signaling in early postnatal intervertebral discs, and re-activates Shh signaling in old discs in the mouse. PLoS One. 2014; 9(6): Article ID e98444
  • [59]Michelotti GA, Xie G, Swiderska M, Choi SS, Karaca G, Kruger L et al.. Smoothened is a master regulator of adult liver repair. J Clin Invest. 2013; 123(6):2380-94.
  • [60]Kordes C, Sawitza I, Haussinger D. Canonical Wnt signaling maintains the quiescent stage of hepatic stellate cells. Biochem Biophys Res Commun. 2008; 367(1):116-23.
  • [61]Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Nakatani T et al.. Tissue inhibitor of metalloproteinases-1 attenuates spontaneous liver fibrosis resolution in the transgenic mouse. Hepatology. 2002; 36(4 Pt 1):850-60.
  • [62]Parsons CJ, Bradford BU, Pan CQ, Cheung E, Schauer M, Knorr A et al.. Antifibrotic effects of a tissue inhibitor of metalloproteinase-1 antibody on established liver fibrosis in rats. Hepatology. 2004; 40(5):1106-15.
  • [63]Barnes MA, McMullen MR, Roychowdhury S, Madhun NZ, Niese K, Olman MA et al.. Macrophage migration inhibitory factor is required for recruitment of scar-associated macrophages during liver fibrosis. J Leukoc Biol. 2015; 97(1):161-9.
  • [64]Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol. 2014; 14(3):181-94.
  • [65]Endo H, Niioka M, Sugioka Y, Itoh J, Kameyama K, Okazaki I et al.. Matrix metalloproteinase-13 promotes recovery from experimental liver cirrhosis in rats. Pathobiology. 2011; 78(5):239-52.
  • [66]Kim WH, Matsumoto K, Bessho K, Nakamura T. Growth inhibition and apoptosis in liver myofibroblasts promoted by hepatocyte growth factor leads to resolution from liver cirrhosis. Am J Pathol. 2005; 166(4):1017-28.
  • [67]Marquardt JU, Seo D, Gomez-Quiroz LE, Uchida K, Gillen MC, Kitade M et al.. Loss of c-Met accelerates development of liver fibrosis in response to CCl(4) exposure through deregulation of multiple molecular pathways. Biochim Biophys Acta. 2012; 1822(6):942-51.
  • [68]Suzumura K, Hirano T, Son G, Iimuro Y, Mizukami H, Ozawa K et al.. Adeno-associated virus vector-mediated production of hepatocyte growth factor attenuates liver fibrosis in mice. Hepatol Int. 2008; 2(1):80-8.
  • [69]Ishikawa T, Factor VM, Marquardt JU, Raggi C, Seo D, Kitade M et al.. Hepatocyte growth factor/c-met signaling is required for stem-cell-mediated liver regeneration in mice. Hepatology. 2012; 55(4):1215-26.
  • [70]Zulehner G, Mikula M, Schneller D, van Zijl F, Huber H, Sieghart W et al.. Nuclear beta-catenin induces an early liver progenitor phenotype in hepatocellular carcinoma and promotes tumor recurrence. Am J Pathol. 2010; 176(1):472-81.
  • [71]Wallace MC, Hamesch K, Lunova M, Kim Y, Weiskirchen R, Strnad P et al.. Standard operating procedures in experimental liver research: thioacetamide model in mice and rats. Lab Anim. 2015; 49(1 Suppl):21-9.
  • [72]Fagan KJ, Pretorius CJ, Horsfall LU, Irvine KM, Wilgen U, Choi K, et al. ELF score >/=9.8 indicates advanced hepatic fibrosis and is influenced by age, steatosis and histological activity. Liver Int. 2014. doi:10.1111/liv.12760.
  • [73]Gadd VL, Melino M, Roy S, Horsfall L, O’Rourke P, Williams MR et al.. Portal, but not lobular, macrophages express matrix metalloproteinase-9: association with the ductular reaction and fibrosis in chronic hepatitis C. Liver Int. 2013; 33(4):569-79.
  文献评价指标  
  下载次数:18次 浏览次数:11次