期刊论文详细信息
Journal of Clinical Bioinformatics
In silico analysis of the molecular machinery underlying aqueous humor production: potential implications for glaucoma
Arthur AB Bergen2  Nomdo M Jansonius1  Peter J van der Spek3  Theo GMF Gorgels4  Sarah F Janssen4 
[1] Department of Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands;Department of Clinical Genetics Academic Medical Center, Amsterdam, the Netherlands;Department of Bioinformatics, Erasmus University Medical Center, Rotterdam, the Netherlands;Department of Clinical and Molecular Ophthalmogenetics the Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
关键词: Drugs;    Glaucoma;    Aqueous humor production;    Transport;    Ciliary body epithelia;   
Others  :  801397
DOI  :  10.1186/2043-9113-3-21
 received in 2013-09-23, accepted in 2013-10-23,  发布年份 2013
PDF
【 摘 要 】

Background

The ciliary body epithelia (CBE) of the eye produce the aqueous humor (AH). The equilibrium between the AH production by the CBE and the outflow through the trabecular meshwork ultimately determines the intraocular pressure (IOP). An increased IOP is a major risk factor for primary open angle glaucoma (POAG). This study aims to elucidate the molecular machinery of the most important function of the CBE: the AH production and composition, and aims to find possible new molecular clues for POAG and AH production-lowering drugs.

Methods

We performed a gene expression analysis of the non-pigmented (NPE) and pigmented epithelia (PE) of the human CBE of post mortem eyes. We used 44 k Agilent microarrays against a common reference design. Functional annotations were performed with the Ingenuity knowledge database.

Results

We built a molecular model of AH production by combining previously published physiological data with our current genomic expression data. Next, we investigated molecular CBE transport features which might influence AH composition. These features included caveolin- and clathrin vesicle-mediated transport of large biomolecules, as well as a range of substrate specific transporters. The presence of these transporters implies that, for example, immunoglobins, thyroid hormone, prostaglandins, cholesterol and vitamins can be secreted by the CBE along with the AH. In silico, we predicted some of the molecular apical interactions between the NPE and PE, the side where the two folded epithelia face each other. Finally, we found high expression of seven POAG disease genes in the plasma membrane of extracellular space of the CBE, namely APOE, CAV1, COL8A2, EDNRA, FBN1, RFTN1 and TLR4 and we found possible new targets for AH lowering drugs in the AH.

Conclusions

The CBE expresses many transporters, which account for AH production and/or composition. Some of these entries have also been associated with POAG. We hypothesize that the CBE may play a more prominent role than currently thought in the pathogenesis of POAG, for example by changing the composition of AH.

【 授权许可】

   
2013 Janssen et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708005435338.pdf 2987KB PDF download
Figure 5. 66KB Image download
Figure 4. 52KB Image download
Figure 3. 65KB Image download
Figure 2. 33KB Image download
Figure 1. 61KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Civan MM: Transport components and net secretion of the aqueous humor and their integrated regulation. In Current Topics in Membranes: The eye's aqueous humor. From secretion to glaucoma, Volume 45. Edited by Civan MM. San Diego, London, Boston, New York, Sydney, Tokyo, Toronto: Academic Press; 1998:1-24.
  • [2]Civan MM, Macknight AD: The ins and outs of aqueous humour secretion. Exp Eye Res 2004, 78:625-631.
  • [3]Kraft ME, Glaeser H, Mandery K, Konig J, Auge D, Fromm MF, et al.: The prostaglandin transporter OATP2A1 is expressed in human ocular tissues and transports the antiglaucoma prostanoid latanoprost. Invest Ophthalmol Vis Sci 2010, 51:2504-2511.
  • [4]Shin BC, Suzuki T, Tanaka S, Kuraoka A, Shibata Y, Takata K: Connexin 43 and the glucose transporter, GLUT1, in the ciliary body of the rat. Histochem Cell Biol 1996, 106:209-214.
  • [5]Duan XM, Xue P, Wang NL, Dong Z, Lu QJ, Yang FQ: Proteomic analysis of aqueous humor from patients with primary open angle glaucoma. Mol Vis 2010, 16:2839-2846.
  • [6]Grus FH, Joachim SC, Sandmann S, Thiel U, Bruns K, Lackner KJ, et al.: Transthyretin and complex protein pattern in aqueous humor of patients with primary open-angle glaucoma. Mol Vis 2008, 14:1437-1445.
  • [7]Izzotti A, Longobardi M, Cartiglia C, Sacca SC: Proteome alterations in primary open angle glaucoma aqueous humor. J Proteome Res 2010, 9:4831-4838.
  • [8]Casson RJ, Chidlow G, Wood JP, Crowston JG, Goldberg I: Definition of glaucoma: clinical and experimental concepts. Clin Experiment Ophthalmol 2012, 40:341-349.
  • [9]Leske MC, Connell AM, Wu SY, Hyman LG, Schachat AP: Risk factors for open-angle glaucoma. The Barbados Eye Study. Arch Ophthalmol 1995, 113:918-924.
  • [10]Weinreb RN, Khaw PT: Primary open-angle glaucoma. Lancet 2004, 363:1711-1720.
  • [11]Janssen SF, Gorgels TG, Bossers K, ten Brink JB, Essing AH, Nagtegaal M, et al.: Gene expression and functional annotation of the human ciliary body epithelia. Plos One 2012, 7:e44973.
  • [12]Booij JC, van Soest S, Swagemakers SMA, Essing AHW, Verkerk AJMH, van der Spek PJ, et al.: Functional annotation of the human retinal pigment epithelium transcriptome. Bmc Genomics 2009, 10:164. BioMed Central Full Text
  • [13]Booij JC, ten Brink JB, Swagemakers SM, Verkerk AJ, Essing AH, van der Spek PJ, et al.: A new strategy to identify and annotate human RPE-specific gene expression. Plos One 2010, 5:e9341.
  • [14]Janssen SF, Gorgels TGNF, Ramdas WD, Klaver CCW, Van Duijn CM, Jansonius NM, et al.: The Vast Complexity of Primary Open Angle Glaucoma: Disease Genes, Risks, Molecular Mechanisms and Pathobiology. Prog Retin Eye Res 2013. in press
  • [15]Gabriel LA, Wang LW, Bader H, Ho JC, Majors AK, Hollyfield JG, et al.: ADAMTSL4, a secreted glycoprotein widely distributed in the eye, binds fibrillin-1 microfibrils and accelerates microfibril biogenesis. Invest Ophthalmol Vis Sci 2011, 1:461-469.
  • [16]Chowdhury UR, Madden BJ, Charlesworth MC, Fautsch MP: Proteome Analysis of Human Aqueous Humor. Invest Ophthalmol Vis Sci 2010, 51:4921-4931.
  • [17]Cumurcu T, Mendil D, Etikan I: Levels of zinc, iron, and copper in patients with pseudoexfoliative cataract. Eur J Ophthalmol 2006, 16:548-553.
  • [18]Kallberg ME, Brooks DE, Gelatt KN, Garcia-Sanchez GA, Szabo NJ, Lambrou GN: Endothelin-1, nitric oxide, and glutamate in the normal and glaucomatous dog eye. Vet Ophthalmol 2007, 10:46-52.
  • [19]Leite MT, Prata TS, Kera CZ, Miranda DV, Barros SBD, Melo LAS: Ascorbic acid concentration is reduced in the secondary aqueous humour of glaucomatous patients. Clin Exp Ophthalmol 2009, 37:402-406.
  • [20]Pelletier CC, Lambert JL, Borchert M: Determination of glucose in human aqueous humor using Raman spectroscopy and designed-solution calibration. Appl Spectrosc 2005, 59:1024-1031.
  • [21]Frank PG, Pavlides S, Lisanti MP: Caveolae and transcytosis in endothelial cells: role in atherosclerosis. Cell Tissue Res 2009, 335:41-47.
  • [22]Jung N, Haucke V: Clathrin-mediated endocytosis at synapses. Traffic 2007, 8:1129-1136.
  • [23]Parkar NS, Akpa BS, Nitsche LC, Wedgewood LE, Place AT, Sverdlov MS, et al.: Vesicle Formation and Endocytosis: Function, Machinery, Mechanisms, and Modeling. Antioxid Redox Signal 2009, 11:1301-1312.
  • [24]Puertollano R: Clathrin-mediated transport: assembly required - Workshop on Molecular Mechanisms of Vesicle Selectivity. Embo Reports 2004, 5:942-946.
  • [25]Tuma PL, Hubbard AL: Transcytosis: Crossing cellular barriers. Physiol Rev 2003, 83:871-932.
  • [26]Eggli PS, Graber W, Vanderzypen E: Formation and Release of Vesicles from the Basal Surfaces of Rat Eye Nonpigmented Ciliary Epithelial-Cells - A Novel Secretory Mechanism. Anat Rec 1991, 231:156-166.
  • [27]Larsson LI, Rettig ES, Brubaker RF: Aqueous flow in open-angle glaucoma. Arch Ophthalmol 1995, 113:283-286.
  • [28]Hardt BW, Johnen R, Fahle M: The influence of systemic digitalis application on intraocular pressure. Graefes Arch Clin Exp Ophthalmol 1982, 219:76-79.
  • [29]Hegazy MA, Labib MA, Ghaleb H, Barradah A: Effect of digoxin on intraocular pressure. Bull Ophthalmol Soc Egypt 1967, 60:83-91.
  • [30]Peczon JD: Clinical evaluation of digitalization in glaucoma. Arch Ophthalmol 1964, 71:500-504.
  • [31]Ferraiolo BL, Pace DG: Digoxin-induced decrease in intraocular pressure in the cat. Eur J Pharmacol 1979, 55:19-22.
  • [32]Arnold JJ, Choksi Y, Chen X, Shimazaki A, Hatten J, Toone EJ, et al.: Eyedrops containing SA9000 prodrugs result in sustained reductions in intraocular pressure in rabbits. J Ocul Pharmacol Ther 2009, 25:179-186.
  • [33]Croft MA, Hubbard WC, Kaufman PL: Effect of ethacrynic acid on aqueous outflow dynamics in monkeys. Invest Ophthalmol Vis Sci 1994, 35:1167-1175.
  • [34]Green K, Mayberry L: Drug effects on the hydraulic conductivity of the isolated rabbit ciliary epithelium. Q J Exp Physiol 1985, 70:271-281.
  • [35]Searles RV, Johnson M, Shikher V, Balaban CD, Severs WB: Effects of ethacrynic acid on intraocular pressure of anesthetized rats. Proc Soc Exp Biol Med 1999, 220:184-188.
  • [36]Shimazaki A, Ichikawa M, Rao PV, Kirihara T, Konomi K, Epstein DL, et al.: Effects of the new ethacrynic acid derivative SA9000 on intraocular pressure in cats and monkeys. Biol Pharm Bull 2004, 27:1019-1024.
  • [37]Tingey DP, Schroeder A, Epstein MP, Epstein DL: Effects of topical ethacrynic acid adducts on intraocular pressure in rabbits and monkeys. Arch Ophthalmol 1992, 110:699-702.
  • [38]Tingey DP, Ozment RR, Schroeder A, Epstein DL: The effect of intracameral ethacrynic acid on the intraocular pressure of living monkeys. Am J Ophthalmol 1992, 113:706-711.
  • [39]Wang RF, Podos SM, Serle JB, Lee PY, Neufeld AH, Deschenes R: Effects of topical ethacrynic acid ointment vs timolol on intraocular pressure in glaucomatous monkey eyes. Arch Ophthalmol 1994, 112:390-394.
  • [40]Kountouras J, Mylopoulos N, Chatzopoulos D, Zavos C, Boura P, Konstas AG, et al.: Eradication of Helicobacter pylori may be beneficial in the management of chronic open-angle glaucoma. Arch Intern Med 2002, 162:1237-1244.
  • [41]Chiang CH, Lin CH: Effects of cromakalim and nicorandil on intraocular pressure after topical administration in rabbit eyes. J Ocul Pharmacol Ther 1995, 11:195-201.
  • [42]Chowdhury UR, Bahler CK, Hann CR, Chang M, Resch ZT, Romero MF, et al.: ATP-sensitive potassium (KATP) channel activation decreases intraocular pressure in the anterior chamber of the eye. Invest Ophthalmol Vis Sci 2011, 52:6435-6442.
  文献评价指标  
  下载次数:54次 浏览次数:18次