期刊论文详细信息
Cardiovascular Diabetology
Insulin treatment increases myocardial ceramide accumulation and disrupts cardiometabolic function
Benjamin T. Bikman1  Trevor S. Tippetts1  Aimee E. Hodson1 
[1] Department of Physiology and Developmental Biology, Brigham Young University, 3017 LSB, Provo 84602, UT, USA
关键词: Ceramide;    Mitochondria;    Hyperinsulinemia;    Insulin;   
Others  :  1235003
DOI  :  10.1186/s12933-015-0316-y
 received in 2015-09-15, accepted in 2015-12-12,  发布年份 2015
PDF
【 摘 要 】

Background

States of hyperinsulinemia, particularly insulin resistance and type 2 diabetes mellitus, are becoming remarkably common, with roughly half a billion people likely to suffer from the disorder within the next 15 years. Along with this rise has been an associated increased burden of cardiovascular disease. Considering type 2 diabetics treated with insulin are more likely to suffer from heart complications, we sought to determine the specific effect of insulin on ceramide-dependent cardiometabolic risk factors, including insulin resistance and altered heart mitochondrial physiology.

Methods

H9c2 cardiomyocytes and adult mice were treated with insulin with or without myriocin to inhibit ceramide biosynthesis. Insulin and glucose changes were tracked throughout the study and mitochondrial bioenergetics was determined in permeabilized cardiomyocytes and myocardium.

Results

Herein, we demonstrate that insulin is sufficient to disrupt heart mitochondrial respiration in both isolated cardiomyocytes and whole myocardium, possibly by increasing mitochondrial fission. Further, insulin increases ceramide accrual in a time-dependent manner, which is necessary for insulin-induced alterations in heart mitochondrial respiration and insulin resistance.

Conclusions

Collectively, these observations have two implications. First, they indicate a pathological role of insulin in heart complications stemming from mitochondrial disruption. Second, they identify ceramide as a possible mediator of insulin-related heart disorders.

【 授权许可】

   
2015 Hodson et al.

【 预 览 】
附件列表
Files Size Format View
20151227030345113.pdf 1703KB PDF download
Fig.8. 66KB Image download
Fig.7. 40KB Image download
Fig.6. 37KB Image download
Fig.5. 45KB Image download
Fig.4. 45KB Image download
Fig.3. 66KB Image download
Fig.2. 103KB Image download
Fig.1. 56KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.7.

Fig.8.

【 参考文献 】
  • [1]Kannel WB, McGee DL. Diabetes and cardiovascular disease. The Framingham study. JAMA J Am Med Assoc. 1979; 241(19):2035-2038.
  • [2]Laing SP, Swerdlow AJ, Slater SD, Burden AC, Morris A, Waugh NR et al.. Mortality from heart disease in a cohort of 23,000 patients with insulin-treated diabetes. Diabetologia. 2003; 46(6):760-765.
  • [3]Orasanu G, Plutzky J. The pathologic continuum of diabetic vascular disease. J Am Coll Cardiol. 2009; 53(5 Suppl):S35-S42.
  • [4]Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus–present and future perspectives. Nat Rev Endocrinol. 2012; 8(4):228-236.
  • [5]Centers for Disease C, Prevention. prevalence of diabetes and impaired fasting glucose in adults—United States, 1999–2000. MMWR Morbidity and mortality weekly report. 2003;52(35):833–7.
  • [6]Matheus AS, Tannus LR, Cobas RA, Palma CC, Negrato CA, Gomes MB. Impact of diabetes on cardiovascular disease: an update. Int J Hypertens. 2013; 2013:653789.
  • [7]Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008; 359(15):1577-1589.
  • [8]Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD et al.. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009; 360(2):129-139.
  • [9]Group AC, Patel A, MacMahon S, Chalmers J, Neal B, Billot L et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–72. doi:10.1056/NEJMoa0802987.
  • [10]Fuentes-Antras J, Picatoste B, Ramirez E, Egido J, Tunon J, Lorenzo O. Targeting metabolic disturbance in the diabetic heart. Cardiovasc Diabetol. 2015; 14:17. BioMed Central Full Text
  • [11]Tilton RG, Chang K, Nyengaard JR, Van den Enden M, Ido Y, Williamson JR. Inhibition of sorbitol dehydrogenase. Effects on vascular and neural dysfunction in streptozocin-induced diabetic rats. Diabetes. 1995; 44(2):234-242.
  • [12]Schmidt AM, Yan SD, Wautier JL, Stern D. Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res. 1999; 84(5):489-497.
  • [13]Yan SF, Ramasamy R, Schmidt AM. Mechanisms of disease: advanced glycation end-products and their receptor in inflammation and diabetes complications. Nat Clin Pract Endocrinol Metab. 2008; 4(5):285-293.
  • [14]Nelson MB, Swensen AC, Winden DR, Bodine JS, Bikman BT, Reynolds PR. Cardiomyocyte mitochondrial respiration is reduced by receptor for advanced glycation end-product signaling in a ceramide-dependent manner. Am J Physiol Heart Circ Physiol. 2015; 309(1):H63-H69.
  • [15]Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F, Ciotola M et al.. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation. 2002; 106(16):2067-2072.
  • [16]King GL, Loeken MR. Hyperglycemia-induced oxidative stress in diabetic complications. Histochem Cell Biol. 2004; 122(4):333-338.
  • [17]Pories WJ, Dohm GL. Diabetes: have we got it all wrong? Hyperinsulinism as the culprit: surgery provides the evidence. Diabetes Care. 2012; 35(12):2438-2442.
  • [18]McAuley KA, Williams SM, Mann JI, Walker RJ, Lewis-Barned NJ, Temple LA et al.. Diagnosing insulin resistance in the general population. Diabetes Care. 2001; 24(3):460-464.
  • [19]Shimizu I, Minamino T, Toko H, Okada S, Ikeda H, Yasuda N et al.. Excessive cardiac insulin signaling exacerbates systolic dysfunction induced by pressure overload in rodents. J Clin Investig. 2010; 120(5):1506-1514.
  • [20]Gerstein HC, Miller ME, Byington RP, Goff DC, Bigger JT et al.. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008; 358(24):2545-2559.
  • [21]Park TS, Hu Y, Noh HL, Drosatos K, Okajima K, Buchanan J et al.. Ceramide is a cardiotoxin in lipotoxic cardiomyopathy. J Lipid Res. 2008; 49(10):2101-2112.
  • [22]Zhang QJ, Holland WL, Wilson L, Tanner JM, Kearns D, Cahoon JM et al.. Ceramide mediates vascular dysfunction in diet-induced obesity by PP2A-mediated dephosphorylation of the eNOS-Akt complex. Diabetes. 2012; 61(7):1848-1859.
  • [23]Tippetts TS, Winden DR, Swensen AC, Nelson MB, Thatcher MO, Saito RR et al.. Cigarette smoke increases cardiomyocyte ceramide accumulation and inhibits mitochondrial respiration. BMC Cardiovasc Disord. 2014; 14:165. BioMed Central Full Text
  • [24]Di Paola M, Cocco T, Lorusso M. Ceramide interaction with the respiratory chain of heart mitochondria. Biochemistry. 2000; 39(22):6660-6668.
  • [25]Smith ME, Tippetts TS, Brassfield ES, Tucker BJ, Ockey A, Swensen AC et al.. Mitochondrial fission mediates ceramide-induced metabolic disruption in skeletal muscle. Biochem J. 2013; 456(3):427-439.
  • [26]Hansen ME, Tippetts TS, Anderson MC, Holub ZE, Moulton ER, Swensen AC et al.. Insulin increases ceramide synthesis in skeletal muscle. J Diabetes Res. 2014; 2014:765784.
  • [27]Siddique MM, Bikman BT, Wang L, Ying L, Reinhardt E, Shui G et al.. Ablation of dihydroceramide desaturase confers resistance to etoposide-induced apoptosis in vitro. PLoS One. 2012; 7(9):e44042.
  • [28]Garber AJ. The importance of titrating starting insulin regimens in patients with type 2 diabetes. Diabetes Obes Metab. 2009; 11 Suppl 5:10-13.
  • [29]Erickson KA, Smith ME, Anthonymuthu TS, Evanson MJ, Brassfield ES, Hodson AE et al.. AICAR inhibits ceramide biosynthesis in skeletal muscle. Diabetol Metab Syndr. 2012; 4(1):45. BioMed Central Full Text
  • [30]Brand MD, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochem J. 2011; 435(2):297-312.
  • [31]Biessels GJ, Kappelle LJ. Increased risk of Alzheimer’s disease in Type II diabetes: insulin resistance of the brain or insulin-induced amyloid pathology? Biochem Soc Trans. 2005; 33(Pt 5):1041-1044.
  • [32]Legro RS, Kunselman AR, Dodson WC, Dunaif A. Prevalence and predictors of risk for type 2 diabetes mellitus and impaired glucose tolerance in polycystic ovary syndrome: a prospective, controlled study in 254 affected women. J Clin Endocrinol Metab. 1999; 84(1):165-169.
  • [33]Kim TN, Park MS, Yang SJ, Yoo HJ, Kang HJ, Song W et al.. Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes: the Korean Sarcopenic Obesity Study (KSOS). Diabetes Care. 2010; 33(7):1497-1499.
  • [34]Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998; 339(4):229-234.
  • [35]Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE et al.. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2001; 86(5):1930-1935.
  • [36]Clinical Guidelines on the identification, evaluation, and treatment of overweight and obesity in adults—The Evidence Report. National Institutes of Health. Obesity Res. 1998;6 Suppl 2:51S–209S.
  • [37]Martin BC, Warram JH, Krolewski AS, Bergman RN, Soeldner JS, Kahn CR. Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study. Lancet. 1992; 340(8825):925-929.
  • [38]Stoekenbroek RM, Rensing KL, Bernelot Moens SJ, Nieuwdorp M, DeVries JH, Zwinderman AH et al.. High daily insulin exposure in patients with type 2 diabetes is associated with increased risk of cardiovascular events. Atherosclerosis. 2015; 240(2):318-323.
  • [39]Parra V, Verdejo HE, Iglewski M, Del Campo A, Troncoso R, Jones D et al.. Insulin stimulates mitochondrial fusion and function in cardiomyocytes via the Akt-mTOR-NFkappaB-Opa-1 signaling pathway. Diabetes. 2014; 63(1):75-88.
  • [40]Pontiroli AE, Alberetto M, Pozza G. Patients with insulinoma show insulin resistance in the absence of arterial hypertension. Diabetologia. 1992; 35(3):294-295.
  • [41]Henry RR, Gumbiner B, Ditzler T, Wallace P, Lyon R, Glauber HS. Intensive conventional insulin therapy for type II diabetes. Metabolic effects during a 6-mo outpatient trial. Diabetes Care. 1993; 16(1):21-31.
  • [42]Del Prato S, Leonetti F, Simonson DC, Sheehan P, Matsuda M, DeFronzo RA. Effect of sustained physiologic hyperinsulinaemia and hyperglycaemia on insulin secretion and insulin sensitivity in man. Diabetologia. 1994; 37(10):1025-1035.
  • [43]Despres JP, Lamarche B, Mauriege P, Cantin B, Dagenais GR, Moorjani S et al.. Hyperinsulinemia as an independent risk factor for ischemic heart disease. N Engl J Med. 1996; 334(15):952-957.
  • [44]Reaven GM. Insulin resistance and compensatory hyperinsulinemia: role in hypertension, dyslipidemia, and coronary heart disease. Am Heart J. 1991; 121(4 Pt 2):1283-1288.
  • [45]Pyorala M, Miettinen H, Laakso M, Pyorala K. Hyperinsulinemia predicts coronary heart disease risk in healthy middle-aged men: the 22-year follow-up results of the Helsinki Policemen Study. Circulation. 1998; 98(5):398-404.
  • [46]Weyer C, Hanson RL, Tataranni PA, Bogardus C, Pratley RE. A high fasting plasma insulin concentration predicts type 2 diabetes independent of insulin resistance: evidence for a pathogenic role of relative hyperinsulinemia. Diabetes. 2000; 49(12):2094-2101.
  • [47]Kekalainen P, Sarlund H, Pyorala K, Laakso M. Hyperinsulinemia cluster predicts the development of type 2 diabetes independently of family history of diabetes. Diabetes Care. 1999; 22(1):86-92.
  • [48]Haffner SM, Stern MP, Hazuda HP, Mitchell BD, Patterson JK. Cardiovascular risk factors in confirmed prediabetic individuals. Does the clock for coronary heart disease start ticking before the onset of clinical diabetes? JAMA J Am Med Assoc. 1990; 263(21):2893-2898.
  • [49]Marciniak C, Marechal X, Montaigne D, Neviere R, Lancel S. Cardiac contractile function and mitochondrial respiration in diabetes-related mouse models. Cardiovasc Diabetol. 2014; 13:118. BioMed Central Full Text
  • [50]Holland WL, Miller RA, Wang ZV, Sun K, Barth BM, Bui HH et al.. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat Med. 2011; 17(1):55-63.
  • [51]Wang ZV, Scherer PE. Adiponectin, cardiovascular function, and hypertension. Hypertension. 2008; 51(1):8-14.
  • [52]Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R. Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2002; 290(3):1084-1089.
  • [53]Abbasi F, Chu JW, McLaughlin T, Lamendola C, Leary ET, Reaven GM. Effect of metformin treatment on multiple cardiovascular disease risk factors in patients with type 2 diabetes mellitus. Metab Clin Exp. 2004; 53(2):159-164.
  • [54]Harrower AD, Clarke BF. Experience of coronary care in diabetes. Br Med J. 1976; 1(6002):126-128.
  • [55]Soler NG, Bennett MA, Pentecost BL, Fitzgerald MG, Malins JM. Myocardial infarction in diabetics. Q J Med. 1975; 44(173):125-132.
  • [56]Ulvenstam G, Aberg A, Bergstrand R, Johansson S, Pennert K, Vedin A et al.. Long-term prognosis after myocardial infarction in men with diabetes. Diabetes. 1985; 34(8):787-792.
  • [57]Park TS, Rosebury W, Kindt EK, Kowala MC, Panek RL. Serine palmitoyltransferase inhibitor myriocin induces the regression of atherosclerotic plaques in hyperlipidemic ApoE-deficient mice. Pharmacol Res. 2008; 58(1):45-51.
  • [58]Glaros EN, Kim WS, Quinn CM, Jessup W, Rye KA, Garner B. Myriocin slows the progression of established atherosclerotic lesions in apolipoprotein E gene knockout mice. J Lipid Res. 2008; 49(2):324-331.
  • [59]Hojjati MR, Li Z, Zhou H, Tang S, Huan C, Ooi E et al.. Effect of myriocin on plasma sphingolipid metabolism and atherosclerosis in apoE-deficient mice. J Biol Chem. 2005; 280(11):10284-10289.
  文献评价指标  
  下载次数:72次 浏览次数:5次