期刊论文详细信息
Journal of Negative Results in Biomedicine
Serotonin: a novel bone mass controller may have implications for alveolar bone
Giovanni Passeri1  Guido Macaluso2  Carlo Galli1 
[1] Dep. Clinical and Experimental Medicine, University of Parma, Parma, Italy;Dep. Biomedicine, Biotechnology and Translational Sciences, University of Parma, Via Gramsci 14, Parma 43126, Italy
关键词: Periodontitis;    Serotonin uptake inhibitors;    Alveolar bone loss;    Serotonin;   
Others  :  812451
DOI  :  10.1186/1477-5751-12-12
 received in 2011-10-26, accepted in 2013-04-23,  发布年份 2013
PDF
【 摘 要 】

As recent studies highlight the importance of alternative mechanisms in the control of bone turnover, new therapeutic approaches can be envisaged for bone diseases and periodontitis-induced bone loss. Recently, it has been shown that Fluoxetine and Venlafaxine, serotonin re-uptake inhibitors commonly used as antidepressants, can positively or negatively affect bone loss in rat models of induced periodontitis. Serotonin is a neurotransmitter that can be found within specific nuclei of the central nervous system, but can also be produced in the gut and be sequestered inside platelet granules. Although it is known to be mainly involved in the control of mood, sleep, and intestinal physiology, recent evidence has pointed at far reaching effects on bone metabolism, as a mediator of the effects of Lrp5, a membrane receptor commonly associated with Wnt canonical signaling and osteoblast differentiation. Deletion of Lrp5 in mice lead to increased expression of Tryptophan Hydroxylase 1, the gut isoform of the enzyme required for serotonin synthesis, thus increasing serum levels of serotonin. Serotonin, in turn, could bind to HTR1B receptors on osteoblasts and stop their proliferation by activating PKA and CREB.

Although different groups have reported controversial results on the existence of an Lrp5-serotonin axis and the action of serotonin in bone remodeling, there is convincing evidence that serotonin modulators such as SSRIs can affect bone turnover. Consequently, the effects of this drug family on periodontal physiology should be thoroughly explored.

【 授权许可】

   
2013 Galli et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140709084611943.pdf 639KB PDF download
Figure 1. 87KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Branco-de-Almeida LS, Franco GC, Castro ML, Dos Santos JG, Anbinder AL, Cortelli SC, Kajiya M, Kawai T, Rosalen PL: Fluoxetine inhibits inflammatory response and bone loss in a rat model of ligature-induced periodontitis. J Periodontol 2012, 83:664-671.
  • [2]Hoyer D, Hannon JP, Martin GR: Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 2002, 71:533-554.
  • [3]Carvalho RS, De Souza CM, Neves JC, Holanda-Pinto SA, Pinto LM, Brito GA, De Andrade GM: Effect of venlafaxine on bone loss associated with ligature-induced periodontitis in wistar rats. J Negat Results Biomed 2010, 9:3. BioMed Central Full Text
  • [4]Jensen P, Farago AF, Awatramani RB, Scott MM, Deneris ES, Dymecki SM: Redefining the serotonergic system by genetic lineage. Nat Neurosci 2008, 11:417-419.
  • [5]Beaulieu JM: A role for Akt and glycogen synthase kinase-3 as integrators of dopamine and serotonin neurotransmission in mental health. J Psychiatry Neurosc 2012, 37:7-16.
  • [6]Daws LC, Gould GG: Ontogeny and regulation of the serotonin transporter: providing insights into human disorders. Pharmacol Ther 2011, 131:61-79.
  • [7]Veenstra-VanderWeele J, Anderson GM, Cook EH Jr: Pharmacogenetics and the serotonin system: initial studies and future directions. Eur J Pharmacol 2000, 410:165-181.
  • [8]Virkkunen M, Linnoila M: Serotonin in early onset, male alcoholics with violent behaviour. Ann Med 1990, 22:327-331.
  • [9]Kishi T, Yoshimura R, Fukuo Y, Okochi T, Matsunaga S, Umene-Nakano W, Nakamura J, Serretti A, Correll CU, Kane JM, Iwata N: The serotonin 1A receptor gene confer susceptibility to mood disorders: results from an extended meta-analysis of patients with major depression and bipolar disorder. Eur Arch Psychiatry Clin Neurosci 2013, 263(2):105-118.
  • [10]Oberlander TF: Fetal serotonin signaling: setting pathways for early childhood development and behavior. J Adolesc Health 2012, 51:S9-S16.
  • [11]Albert PR, Benkelfat C, Descarries L: The neurobiology of depression--revisiting the serotonin hypothesis. I. Cellular and molecular mechanisms. Philos Trans R Soc Lond B Biol Sci 2011, 367:2378-2381.
  • [12]Lee YC, Nassikas NJ, Clauw DJ: The role of the central nervous system in the generation and maintenance of chronic pain in rheumatoid arthritis, osteoarthritis and fibromyalgia. Arthritis Res Ther 2011, 13:211. BioMed Central Full Text
  • [13]Crowell MD: Role of serotonin in the pathophysiology of the irritable bowel syndrome. Br J Pharmacol 2004, 141:1285-1293.
  • [14]Abid S, Houssaini A, Chevarin C, Marcos E, Tissot CM, Gary-Bobo G, Wan F, Mouraret N, Amsellem V, Dubois-Rande JL, et al.: Inhibition of Gut- and lung-derived serotonin attenuates pulmonary hypertension in mice. Am J Physiol Lung Cell Mol Physiol 2012, 303(6):L500-L508.
  • [15]Jedlitschky G, Greinacher A, Kroemer HK: Transporters in human platelets: physiologic function and impact for pharmacotherapy. Blood 2012, 119:3394-3402.
  • [16]De Abajo FJ: Effects of selective serotonin reuptake inhibitors on platelet function: mechanisms, clinical outcomes and implications for use in elderly patients. Drugs Aging 2011, 28:345-367.
  • [17]Rabenda V, Nicolet D, Beaudart C, Bruyere O, Reginster JY: Relationship between use of antidepressants and risk of fractures: a meta-analysis. Osteoporos Int 2013, 24:121-137.
  • [18]Zucker I, Chodick G, Grunhaus L, Raz R, Shalev V: Adherence to treatment with selective serotonin reuptake inhibitors and the risk for fractures and bone loss: a population-based cohort study. CNS Drugs 2012, 26:537-547.
  • [19]Chau K, Atkinson SA, Taylor VH: Are selective serotonin reuptake inhibitors a secondary cause of low bone density? J Osteoporos 2012., 323061
  • [20]Eom CS, Lee HK, Ye S, Park SM, Cho KH: Use of selective serotonin reuptake inhibitors and risk of fracture: a systematic review and meta-analysis. J Bone Miner Res 2012, 27:1186-1195.
  • [21]Calarge CA, Ellingrod VL, Zimmerman B, Bliziotes MM, Schlechte JA: Variants of the serotonin transporter gene, selective serotonin reuptake inhibitors, and bone mineral density in risperidone-treated boys: a reanalysis of data from a cross-sectional study with emphasis on pharmacogenetics. J Clin Psychiatry 2011, 72:1685-1690.
  • [22]Wu Q, Bencaz AF, Hentz JG, Crowell MD: Selective serotonin reuptake inhibitor treatment and risk of fractures: a meta-analysis of cohort and case–control studies. Osteoporos Int 2012, 23(1):365-375.
  • [23]Bakken MS, Engeland A, Engesaeter LB, Ranhoff AH, Hunskaar S, Ruths S: Increased risk of hip fracture among older people using antidepressant drugs: data from the Norwegian prescription database and the Norwegian Hip fracture registry. Age Ageing 2013. Epub ahead of print
  • [24]Shea ML, Garfield LD, Teitelbaum S, Civitelli R, Mulsant BH, Reynolds CF 3rd, Dixon D, Dore P, Lenze EJ: Serotonin-norepinephrine reuptake inhibitor therapy in late-life depression is associated with increased marker of bone resorption. Osteoporos Int 2013, 25(5):1741-1749.
  • [25]Dubnov-Raz G, Hemila H, Vurembrand Y, Kuint J, Maayan-Metzger A: Maternal use of selective serotonin reuptake inhibitors during pregnancy and neonatal bone density. Early Hum Dev 2012, 88(3):191-194.
  • [26]Ferreira JT, Levy PQ, Marinho CR, Bicho MP, Mascarenhas MR: Association of serotonin transporter gene polymorphism 5HTTVNTR with osteoporosis. Acta Reumatol Port 2011, 36(1):14-19.
  • [27]Costa JE, Gomes CC, Cota LO, Pataro AL, Silva JF, Gomez RS, Costa FO: Polymorphism in the promoter region of the gene for 5-HTT in individuals with aggressive periodontitis. J Oral Sci 2008, 50:193-198.
  • [28]van Amerongen R, Mikels A, Nusse R: Alternative wnt signaling is initiated by distinct receptors. Sci Signal 2008, 1:re9.
  • [29]Yang-Snyder J, Miller JR, Brown JD, Lai CJ, Moon RT: A frizzled homolog functions in a vertebrate Wnt signaling pathway. Curr Biol 1996, 6:1302-1306.
  • [30]Moon RT, Brown JD, Yang-Snyder JA, Miller JR: Structurally related receptors and antagonists compete for secreted Wnt ligands. Cell 1997, 88:725-728.
  • [31]Gordon MD, Nusse R: Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem 2006, 281:22429-22433.
  • [32]Leonard JD, Ettensohn CA: Analysis of dishevelled localization and function in the early sea urchin embryo. Dev Biol 2007, 306:50-65.
  • [33]Angers S, Moon RT: Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol 2009, 10(7):468-477.
  • [34]Clevers H: Wnt/beta-catenin signaling in development and disease. Cell 2006, 127:469-480.
  • [35]Verheyen EM, Gottardi CJ: Regulation of Wnt/beta-catenin signaling by protein kinases. Dev Dyn 2010, 239(1):34-44.
  • [36]Roberts DM, Pronobis MI, Poulton JS, Waldmann JD, Stephenson EM, Hanna S, Peifer M: Deconstructing the sscatenin destruction complex: mechanistic roles for the tumor suppressor APC in regulating Wnt signaling. Mol Biol Cell 2011, 22:1845-1863.
  • [37]Mosimann C, Hausmann G, Basler K: Beta-catenin hits chromatin: regulation of Wnt target gene activation. Nat Rev Mol Cell Biol 2009, 10:276-286.
  • [38]Mao CD, Byers SW: Cell-context dependent TCF/LEF expression and function: alternative tales of repression, de-repression and activation potentials. Crit Rev Eukaryot Gene Expr 2011, 21:207-236.
  • [39]Krishnan V, Bryant HU, Macdougald OA: Regulation of bone mass by Wnt signaling. J Clin Invest 2006, 116:1202-1209.
  • [40]Rodda SJ, McMahon AP: Distinct roles for hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 2006, 133:3231-3244.
  • [41]Glass DA 2nd, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, Taketo MM, Long F, McMahon AP, Lang RA, Karsenty G: Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 2005, 8:751-764.
  • [42]Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, Wang H, Cundy T, Glorieux FH, Lev D, et al.: LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 2001, 107:513-523.
  • [43]Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, Wu D, Insogna K, Lifton RP: High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 2002, 346:1513-1521.
  • [44]Yadav VK, Ryu JH, Suda N, Tanaka KF, Gingrich JA, Schutz G, Glorieux FH, Chiang CY, Zajac JD, Insogna KL, et al.: Lrp5 Controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 2008, 135:825-837.
  • [45]Yadav VK, Arantes HP, Barros ER, Lazaretti-Castro M, Ducy P: Genetic analysis of Lrp5 function in osteoblast progenitors. Calcif Tissue Int 2010, 86:382-388.
  • [46]Saarinen A, Saukkonen T, Kivela T, Lahtinen U, Laine C, Somer M, Toiviainen-Salo S, Cole WG, Lehesjoki AE, Makitie O: Low density lipoprotein receptor-related protein 5 (LRP5) mutations and osteoporosis, impaired glucose metabolism and hypercholesterolaemia. Clin Endocrinol (Oxf) 2010, 72:481-488.
  • [47]Frost M, Andersen TE, Yadav V, Brixen K, Karsenty G, Kassem M: Patients with high-bone-mass phenotype owing to Lrp5-T253I mutation have low plasma levels of serotonin. J Bone Miner Res 2010, 25:673-675.
  • [48]Gustafsson BI, Thommesen L, Stunes AK, Tommeras K, Westbroek I, Waldum HL, Slordahl K, Tamburstuen MV, Reseland JE, Syversen U: Serotonin and fluoxetine modulate bone cell function in vitro. J Cell Biochem 2006, 98:139-151.
  • [49]Laporta J, Peters TL, Weaver SR, Merriman KE, Hernandez LL: Feeding 5-hydroxy-l-tryptophan during the transition from pregnancy to lactation increases calcium mobilization from bone in rats. Domest Anim Endocrinol 2013, 44(4):176-184.
  • [50]Niziolek PJ, Farmer TL, Cui Y, Turner CH, Warman ML, Robling AG: High-bone-mass-producing mutations in the Wnt signaling pathway result in distinct skeletal phenotypes. Bone 2011, 49(5):1010-1019.
  • [51]Cui Y, Niziolek PJ, MacDonald BT, Zylstra CR, Alenina N, Robinson DR, Zhong Z, Matthes S, Jacobsen CM, Conlon RA, et al.: Lrp5 Functions in bone to regulate bone mass. Nat Med 2011, 17:684-691.
  • [52]Gustafsson BI, Westbroek I, Waarsing JH, Waldum H, Solligard E, Brunsvik A, Dimmen S, van Leeuwen JP, Weinans H, Syversen U: Long-term serotonin administration leads to higher bone mineral density, affects bone architecture, and leads to higher femoral bone stiffness in rats. J Cell Biochem 2006, 97:1283-1291.
  • [53]Goltzman D: LRP5, Serotonin, and bone: complexity, contradictions, and conundrums. J Bone Miner Res 2011, 26:1997-2001.
  • [54]Westbroek I, Waarsing JH, van Leeuwen JP, Waldum H, Reseland JE, Weinans H, Syversen U, Gustafsson BI: Long-term fluoxetine administration does not result in major changes in bone architecture and strength in growing rats. J Cell Biochem 2007, 101:360-368.
  • [55]Abdel-Satera KA, Abdel-Daiem WM, Sayyed Bakheet M: The gender difference of selective serotonin reuptake inhibitor, fluoxetine in adult rats with stress-induced gastric ulcer. Eur J Pharmacol 2012, 688(1-3):42-48.
  • [56]Choi MR, Hwang S, Park GM, Jung KH, Kim SH, Das ND, Chai YG: Effect of fluoxetine on the expression of tryptophan hydroxylase and 14-3-3 protein in the dorsal raphe nucleus and hippocampus of rat. J Chem Neuroanat 2012, 43:96-102.
  • [57]Roumestan C, Michel A, Bichon F, Portet K, Detoc M, Henriquet C, Jaffuel D, Mathieu M: Anti-inflammatory properties of desipramine and fluoxetine. Respir Res 2007, 8:35. BioMed Central Full Text
  • [58]Benekareddy M, Mehrotra P, Kulkarni VA, Ramakrishnan P, Dias BG, Vaidya VA: Antidepressant treatments regulate matrix metalloproteinases-2 and −9 (MMP-2/MMP-9) and tissue inhibitors of the metalloproteinases (TIMPS 1–4) in the adult rat hippocampus. Synapse 2008, 62:590-600.
  • [59]Lee JY, Kim HS, Choi HY, Oh TH, Yune TY: Fluoxetine inhibits matrix metalloprotease activation and prevents disruption of blood-spinal cord barrier after spinal cord injury. Brain 2012, 135:2375-2389.
  • [60]Hodge JM, Wang Y, Berk M, Collier FM, Fernandes TJ, Constable MJ, Pasco JA, Dodd S, Nicholson GC, Kennedy RL, Williams LJ: Selective serotonin reuptake inhibitors inhibit human osteoclast and osteoblast formation and function. Biol Psychiatry 2012. Epub ahead of print
  • [61]Baik SY, Jung KH, Choi MR, Yang BH, Kim SH, Lee JS, Oh DY, Choi IG, Chung H, Chai YG: Fluoxetine-induced up-regulation of 14-3-3zeta and tryptophan hydroxylase levels in RBL-2H3 cells. Neurosci Lett 2005, 374:53-57.
  • [62]Yadav VK, Oury F, Suda N, Liu ZW, Gao XB, Confavreux C, Klemenhagen KC, Tanaka KF, Gingrich JA, Guo XE, et al.: A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell 2009, 138:976-989.
  • [63]Yadav VK, Balaji S, Suresh PS, Liu XS, Lu X, Li Z, Guo XE, Mann JJ, Balapure AK, Gershon MD, et al.: Pharmacological inhibition of gut-derived serotonin synthesis is a potential bone anabolic treatment for osteoporosis. Nat Med 2010, 16:308-312.
  • [64]Inose H, Zhou B, Yadav VK, Guo XE, Karsenty G, Ducy P: Efficacy of serotonin inhibition in mouse models of bone loss. J Bone Miner Res 2011, 26:2002-2011.
  • [65]Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z, Zhao L, Nagy TR, Peng X, Hu J, et al.: TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med 2009, 15:757-765.
  • [66]Galli C, Fu Q, Wang W, Olsen BR, Manolagas SC, Jilka RL, O'Brien CA: Commitment to the osteoblast lineage is not required for RANKL gene expression. J Biol Chem 2009, 284:12654-12662.
  • [67]Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O'Brien CA: Matrix-embedded cells control osteoclast formation. Nat Med 2012, 17:1235-1241.
  • [68]Kato M, Patel MS, Levasseur R, Lobov I, Chang BH, Glass DA 2nd, Hartmann C, Li L, Hwang TH, Brayton CF, et al.: Cbfa1-Independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol 2002, 157:303-314.
  • [69]Kubota T, Michigami T, Sakaguchi N, Kokubu C, Suzuki A, Namba N, Sakai N, Nakajima S, Imai K, Ozono K: Lrp6 Hypomorphic mutation affects bone mass through bone resorption in mice and impairs interaction with mesd. J Bone Miner Res 2008, 23:1661-1671.
  文献评价指标  
  下载次数:2次 浏览次数:5次