期刊论文详细信息
Genome Biology
VlincRNAs controlled by retroviral elements are a hallmark of pluripotency and cancer
Philipp Kapranov4  Weidong Xiao8  Timothy A McCaffrey1  Timothy J Triche6  Nianli Sang3  Estelle Nicolas7  Sandra Lazorthes7  Xiaoxuan Fan8  Michael R Tackett4  Biao Dong8  Dmitry Shtokalo2  Georges St Laurent5 
[1] The George Washington University Medical Center, Department of Medicine, Division of Genomic Medicine, 2300 I St. NW, Washington, D.C;A.P.Ershov Institute of Informatics Systems SB RAS, 6, Acad. Lavrentjev ave., Novosibirsk 630090, Russia;Department of Biology, Drexel University, 3245 Chestnut St, PISB 417, Philadelphia, PA;St. Laurent Institute, One Kendall Square, Cambridge, MA;Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI;Department of Pathology, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA;CNRS, LBCMCP, F-31062 Toulouse, France;Department of Microbiology and Immunology, Sol Sherry Thrombosis Research Center, Temple University, Philadelphia, PA
关键词: RNAseq;    single molecule sequencing;    intelligent scaffold;    non-coding RNA;    embryonic stem cell;    cancer;    macroRNA;    LTR;    vlincRNA;   
Others  :  864148
DOI  :  10.1186/gb-2013-14-7-r73
 received in 2012-11-05, accepted in 2013-07-22,  发布年份 2013
PDF
【 摘 要 】

Background

The function of the non-coding portion of the human genome remains one of the most important questions of our time. Its vast complexity is exemplified by the recent identification of an unusual and notable component of the transcriptome - very long intergenic non-coding RNAs, termed vlincRNAs.

Results

Here we identify 2,147 vlincRNAs covering 10 percent of our genome. We show they are present not only in cancerous cells, but also in primary cells and normal human tissues, and are controlled by canonical promoters. Furthermore, vlincRNA promoters frequently originate from within endogenous retroviral sequences. Strikingly, the number of vlincRNAs expressed from endogenous retroviral promoters strongly correlates with pluripotency or the degree of malignant transformation. These results suggest a previously unknown connection between the pluripotent state and cancer via retroviral repeat-driven expression of vlincRNAs. Finally, we show that vlincRNAs can be syntenically conserved in humans and mouse and their depletion using RNAi can cause apoptosis in cancerous cells.

Conclusions

These intriguing observations suggest that vlincRNAs could create a framework that combines many existing short ESTs and lincRNAs into a landscape of very long transcripts functioning in the regulation of gene expression in the nucleus. Certain types of vlincRNAs participate at specific stages of normal development and, based on analysis of a limited set of cancerous and primary cell lines, they appear to be co-opted by cancer-associated transcriptional programs. This provides additional understanding of transcriptome regulation during the malignant state, and could lead to additional targets and options for its reversal.

【 授权许可】

   
2013 St Laurent et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725082644699.pdf 6726KB PDF download
71KB Image download
72KB Image download
57KB Image download
72KB Image download
61KB Image download
103KB Image download
【 图 表 】

【 参考文献 】
  • [1]Mattick JS: The central role of RNA in human development and cognition. FEBS Lett 2011, 585:1600-1616.
  • [2]Carninci P, Yasuda J, Hayashizaki Y: Multifaceted mammalian transcriptome. Curr Opin Cell Biol 2008, 20:274-280.
  • [3]Clark MB, Amaral PP, Schlesinger FJ, Dinger ME, Taft RJ, Rinn JL, Ponting CP, Stadler PF, Morris KV, Morillon A, Rozowsky JS, Gerstein MB, Wahlestedt C, Hayashizaki Y, Carninci P, Gingeras TR, Mattick JS: The reality of pervasive transcription. PLoS Biol 2011, 9:e1000625. discussion e1001102
  • [4]Kapranov P, St Laurent G: Dark Matter RNA: Existence, Function, and Controversy. Front Genet 2012, 3:60.
  • [5]Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M: An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489:57-74.
  • [6]Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Roder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, et al.: Landscape of transcription in human cells. Nature 2012, 489:101-108.
  • [7]Brosius J: Waste not, want not--transcript excess in multicellular eukaryotes. Trends Genet 2005, 21:287-288.
  • [8]Struhl K: Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat Struct Mol Biol 2007, 14:103-105.
  • [9]van Bakel H, Hughes TR: Establishing legitimacy and function in the new transcriptome. Brief Funct Genomic Proteomic 2009, 8:424-436.
  • [10]van Bakel H, Nislow C, Blencowe BJ, Hughes TR: Most "dark matter" transcripts are associated with known genes. PLoS Biol 2010, 8:e1000371.
  • [11]van Bakel H, Nislow C, Blencowe BJ, Hughes TR: Response to "The Reality of Pervasive Transcription". PLoS Biol 2011, 9:e1001102.
  • [12]Kapranov P, St Laurent G, Raz T, Ozsolak F, Reynolds CP, Sorensen PH, Reaman G, Milos P, Arceci RJ, Thompson JF, Triche TJ: The majority of total nuclear-encoded non-ribosomal RNA in a human cell is 'dark matter' un-annotated RNA. BMC Biol 2010, 8:149. BioMed Central Full Text
  • [13]Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein BE, van Oudenaarden A, Regev A, Lander ES, Rinn JL: Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA 2009, 106:11667-11672.
  • [14]Koerner MV, Pauler FM, Huang R, Barlow DP: The function of non-coding RNAs in genomic imprinting. Development 2009, 136:1771-1783.
  • [15]Latos PA, Barlow DP: Regulation of imprinted expression by macro non-coding RNAs. RNA Biol 2009, 6:100-106.
  • [16]Ernst J, Kellis M: Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat Biotechnol 2010, 28:817-825.
  • [17]Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, Zhang X, Wang L, Issner R, Coyne M, Ku M, Durham T, Kellis M, Bernstein BE: Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 2011, 473:43-49.
  • [18]Cheng J, Kapranov P, Drenkow J, Dike S, Brubaker S, Patel S, Long J, Stern D, Tammana H, Helt G, Sementchenko V, Piccolboni A, Bekiranov S, Bailey DK, Ganesh M, Ghosh S, Bell I, Gerhard DS, Gingeras TR: Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 2005, 308:1149-1154.
  • [19]Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M, Nishida H, Yap CC, Suzuki M, Kawai J, Suzuki H, Carninci P, Hayashizaki Y, Wells C, Frith M, Ravasi T, Pang KC, Hallinan J, Mattick J, Hume DA, Lipovich L, Batalov S, Engstrom PG, Mizuno Y, Faghihi MA, Sandelin A, Chalk AM, Mottagui-Tabar S, Liang Z, Lenhard B, et al.: Antisense transcription in the mammalian transcriptome. Science 2005, 309:1564-1566.
  • [20]Faulkner GJ, Kimura Y, Daub CO, Wani S, Plessy C, Irvine KM, Schroder K, Cloonan N, Steptoe AL, Lassmann T, Waki K, Hornig N, Arakawa T, Takahashi H, Kawai J, Forrest AR, Suzuki H, Hayashizaki Y, Hume DA, Orlando V, Grimmond SM, Carninci P: The regulated retrotransposon transcriptome of mammalian cells. Nat Genet 2009, 41:563-571.
  • [21]Gerstein MB, Kundaje A, Hariharan M, Landt SG, Yan KK, Cheng C, Mu XJ, Khurana E, Rozowsky J, Alexander R, Min R, Alves P, Abyzov A, Addleman N, Bhardwaj N, Boyle AP, Cayting P, Charos A, Chen DZ, Cheng Y, Clarke D, Eastman C, Euskirchen G, Frietze S, Fu Y, Gertz J, Grubert F, Harmanci A, Jain P, Kasowski M, et al.: Architecture of the human regulatory network derived from ENCODE data. Nature 2012, 489:91-100.
  • [22]Cohen CJ, Lock WM, Mager DL: Endogenous retroviral LTRs as promoters for human genes: a critical assessment. Gene 2009, 448:105-114.
  • [23]Kelley DR, Rinn JL: Transposable elements reveal a stem cell specific class of long noncoding RNAs. Genome Biol 2012, 13:R107. BioMed Central Full Text
  • [24]Tilgner H, Knowles DG, Johnson R, Davis CA, Chakrabortty S, Djebali S, Curado J, Snyder M, Gingeras TR, Guigo R: Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res 2012, 22:1616-1625.
  • [25]Pi W, Zhu X, Wu M, Wang Y, Fulzele S, Eroglu A, Ling J, Tuan D: Long-range function of an intergenic retrotransposon. Proc Natl Acad Sci USA 2010, 107:12992-12997.
  • [26]Ling J, Pi W, Yu X, Bengra C, Long Q, Jin H, Seyfang A, Tuan D: The ERV-9 LTR enhancer is not blocked by the HS5 insulator and synthesizes through the HS5 site non-coding, long RNAs that regulate LTR enhancer function. Nucleic Acids Res 2003, 31:4582-4596.
  • [27]Domansky AN, Kopantzev EP, Snezhkov EV, Lebedev YB, Leib-Mosch C, Sverdlov ED: Solitary HERV-K LTRs possess bi-directional promoter activity and contain a negative regulatory element in the U5 region. FEBS Lett 2000, 472:191-195.
  • [28]Feuchter A, Mager D: Functional heterogeneity of a large family of human LTR-like promoters and enhancers. Nucleic Acids Res 1990, 18:1261-1270.
  • [29]Pang KC, Frith MC, Mattick JS: Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genet 2006, 22:1-5.
  • [30]van Dijk M, Thulluru HK, Mulders J, Michel OJ, Poutsma A, Windhorst S, Kleiverda G, Sie D, Lachmeijer AM, Oudejans CB: HELLP babies link a novel lincRNA to the trophoblast cell cycle. J Clin Invest 2012, 122:4003-4011.
  • [31]St Laurent G, Savva YA, Kapranov P: Dark matter RNA: an intelligent scaffold for the dynamic regulation of the nuclear information landscape. Front Genet 2012, 3:57.
  • [32]Driessens G, Beck B, Caauwe A, Simons BD, Blanpain C: Defining the mode of tumour growth by clonal analysis. Nature 2012.
  • [33]Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, Parada LF: A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 2012.
  • [34]Schepers AG, Snippert HJ, Stange DE, van den Born M, van Es JH, van de Wetering M, Clevers H: Lineage Tracing Reveals Lgr5+ Stem Cell Activity in Mouse Intestinal Adenomas. Science 2012.
  • [35]Ruprecht K, Mayer J, Sauter M, Roemer K, Mueller-Lantzsch N: Endogenous retroviruses and cancer. Cell Mol Life Sci 2008, 65:3366-3382.
  • [36]Cegolon L, Salata C, Weiderpass E, Vineis P, Palu G, Mastrangelo G: Human endogenous retroviruses and cancer prevention: evidence and prospects. BMC Cancer 2013, 13:4. BioMed Central Full Text
  • [37]Efroni S, Duttagupta R, Cheng J, Dehghani H, Hoeppner DJ, Dash C, Bazett-Jones DP, Le Grice S, McKay RD, Buetow KH, Gingeras TR, Misteli T, Meshorer E: Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2008, 2:437-447.
  • [38]Leung DC, Lorincz MC: Silencing of endogenous retroviruses: when and why do histone marks predominate?. Trends Biochem Sci 2012, 37:127-133.
  • [39]Lavie L, Kitova M, Maldener E, Meese E, Mayer J: CpG methylation directly regulates transcriptional activity of the human endogenous retrovirus family HERV-K(HML-2). J Virol 2005, 79:876-883.
  • [40]Reiss D, Zhang Y, Mager DL: Widely variable endogenous retroviral methylation levels in human placenta. Nucleic Acids Res 2007, 35:4743-4754.
  • [41]Maksakova IA, Mager DL, Reiss D: Keeping active endogenous retroviral-like elements in check: the epigenetic perspective. Cell Mol Life Sci 2008, 65:3329-3347.
  • [42]Reiss D, Mager DL: Stochastic epigenetic silencing of retrotransposons: does stability come with age?. Gene 2007, 390:130-135.
  • [43]Szpakowski S, Sun X, Lage JM, Dyer A, Rubinstein J, Kowalski D, Sasaki C, Costa J, Lizardi PM: Loss of epigenetic silencing in tumors preferentially affects primate-specific retroelements. Gene 2009, 448:151-167.
  • [44]ENCODE Chromatin State Segmentation by HMM from Broad Institute, MIT and MGH. [http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg18&g=wgEncodeBroadHmm] webcite
  • [45]ENCODE Transcription Factor Binding Sites by ChIP-seq from Yale/UC-Davis/Harvard. [http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg18&g=wgEncodeYaleChIPseq] webcite
  • [46]Long RNA-seq from ENCODE/Cold Spring Harbor Lab. [http://www.genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeCshlLongRnaSeq] webcite
  • [47]UCSC HG19 Annotation Database. [http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/] webcite
  • [48]UCSC HG18 Annotation Database. [http://hgdownload.cse.ucsc.edu/goldenPath/hg18/database/] webcite
  • [49]NHGRI Catalog of Published Genome-Wide Association Studies. [http://www.genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=gwasCatalog] webcite
  • [50]Mapability or Uniqueness of Reference Genome from ENCODE. [http://hgwdev.cse.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeMapability] webcite
  • [51]Raz T, Kapranov P, Lipson D, Letovsky S, Milos PM, Thompson JF: Protocol dependence of sequencing-based gene expression measurements. PLoS ONE 2011, 6:e19287.
  • [52]St Laurent G, Shtokalo D, Tackett M, Yang Z, Eremina T, Wahlestedt C, Inchima SU, Seilheimer B, McCaffrey TA, Kapranov P: Intronic RNAs constitute the major fraction of the non-coding RNA in mammalian cells. BMC Genomics 2012, 13:504. BioMed Central Full Text
  • [53]Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D: The human genome browser at UCSC. Genome Res 2002, 12:996-1006.
  • [54]Yuan B, Latek R, Hossbach M, Tuschl T, Lewitter F: siRNA Selection Server: an automated siRNA oligonucleotide prediction server. Nucleic Acids Res 2004, 32:W130-134.
  • [55]Scherr M, Battmer K, Winkler T, Heidenreich O, Ganser A, Eder M: Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood 2003, 101:1566-1569.
  • [56]The ENCODE Project Consortium: A user's guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol 2011, 9:e1001046.
  • [57]Parkhomchuk D, Borodina T, Amstislavskiy V, Banaru M, Hallen L, Krobitsch S, Lehrach H, Soldatov A: Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res 2009, 37:e123.
  文献评价指标  
  下载次数:30次 浏览次数:11次