期刊论文详细信息
Gut Pathogens
The bioluminescent Listeria monocytogenes strain Xen32 is defective in flagella expression and highly attenuated in orally infected BALB/cJ mice
Andreas Lengeling1  Klaus Schughart2  Manfred Rohde3  Silke Bergmann4 
[1] Infection and Immunity Division, The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Veterinary Campus, Edinburgh EH25 9RG, UK;University of Tennessee Health Science Center, Memphis, TN, USA;Department of Medical Microbiology, Helmholtz Centre for Infection Research, Braunschweig D-38124, Germany;Department of Infection Genetics, Helmholtz Centre for Infection Research & University of Veterinary Medicine Hannover, Braunschweig D-38124, Germany
关键词: Bioluminescent imaging;    Mouse infection model;    Flagella;    Listeriosis;   
Others  :  821270
DOI  :  10.1186/1757-4749-5-19
 received in 2013-05-01, accepted in 2013-06-28,  发布年份 2013
PDF
【 摘 要 】

Background

In vivo bioluminescence imaging (BLI) is a powerful method for the analysis of host-pathogen interactions in small animal models. The commercially available bioluminescent Listeria monocytogenes strain Xen32 is commonly used to analyse immune functions in knockout mice and pathomechanisms of listeriosis.

Findings

To analyse and image listerial dissemination after oral infection we have generated a murinised Xen32 strain (Xen32-mur) which expresses a previously described mouse-adapted internalin A. This strain was used alongside the Xen32 wild type strain and the bioluminescent L. monocytogenes strains EGDe-lux and murinised EGDe-mur-lux to characterise bacterial dissemination in orally inoculated BALB/cJ mice. After four days of infection, Xen32 and Xen32-mur infected mice displayed consistently higher rates of bioluminescence compared to EGDe-lux and EGDe-mur-lux infected animals. However, surprisingly both Xen32 strains showed attenuated virulence in orally infected BALB/c mice that correlated with lower bacterial burden in internal organs at day 5 post infection, smaller losses in body weights and increased survival compared to EGDe-lux or EGDe-mur-lux inoculated animals. The Xen32 strain was made bioluminescent by integration of a lux-kan transposon cassette into the listerial flaA locus. We show here that this integration results in Xen32 in a flaA frameshift mutation which makes this strain flagella deficient.

Conclusions

The bioluminescent L. monocytogenes strain Xen32 is deficient in flagella expression and highly attenuated in orally infected BALB/c mice. As this listerial strain has been used in many BLI studies of murine listeriosis, it is important that the scientific community is aware of its reduced virulence in vivo.

【 授权许可】

   
2013 Bergmann et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140712071736627.pdf 807KB PDF download
Figure 3. 33KB Image download
Figure 2. 54KB Image download
Figure 1. 58KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Hardy J, Francis KP, DeBoer M, Chu P, Gibbs K, Contag CH: Extracellular replication of Listeria monocytogenes in the murine gall bladder. Science 2004, 303:851-853.
  • [2]Hardy J, Margolis JJ, Contag CH: Induced biliary excretion of Listeria monocytogenes. Infect Immun 2006, 74:1819-1827.
  • [3]Contag PR: Bioluminescence imaging to evaluate infections and host response in vivo. Meth Mol Biol 2008, 415:101-118.
  • [4]Brandl K, Plitas G, Schnabl B, DeMatteo RP, Pamer EG: MyD88-mediated signals induce the bactericidal lectin RegIII gamma and protect mice against intestinal Listeria monocytogenes infection. J Exp Med 2007, 204:1891-1900.
  • [5]Hardy J, Chu P, Contag CH: Foci of Listeria monocytogenes persist in the bone marrow. Dis Model Mech 2009, 2:39-46.
  • [6]Hardy J, Kirkendoll B, Zhao H, Pisani L, Luong R, Switzer A, McConnell MV, Contag CH: Infection of pregnant mice with Listeria monocytogenes induces fetal bradycardia. Pediatr Res 2012, 71:539-545.
  • [7]Poulsen KP, Faith NG, Steinberg H, Czuprynski CJ: Pregnancy reduces the genetic resistance of C57BL/6 mice to Listeria monocytogenes infection by intragastric inoculation. Microb Pathog 2011, 50:360-366.
  • [8]Wollert T, Pasche B, Rochon M, Deppenmeier S, van den Heuvel J, Gruber AD, Heinz DW, Lengeling A, Schubert WD: Extending the host range of Listeria monocytogenes by rational protein design. Cell 2007, 129:891-902.
  • [9]Bergmann S, Beard PM, Pasche B, Lienenklaus S, Weiss S, Gahan CG, Schughart K, Lengeling A: Influence of Internalin A murinisation on host resistance to orally acquired listeriosis in mice. BMC Microbiol 2013, 13:90. BioMed Central Full Text
  • [10]Monk IR, Casey PG, Hill C, Gahan CG: Directed evolution and targeted mutagenesis to murinize Listeria monocytogenes internalin A for enhanced infectivity in the murine oral infection model. BMC Microbiol 2010, 10:318. BioMed Central Full Text
  • [11]Roberts AJ, Williams SK, Wiedmann M, Nightingale KK: Some Listeria monocytogenes outbreak strains demonstrate significantly reduced invasion, inlA transcript levels, and swarming motility in vitro. Appl Environ Microbiol 2009, 75:5647-5658.
  • [12]Mackaness GB: The Immunological Basis of Acquired Cellular Resistance. J Exp Med 1964, 120:105-120.
  • [13]Portnoy DA, Jacks PS, Hinrichs DJ: Role of hemolysin for the intracellular growth of Listeria monocytogenes. J Exp Med 1988, 167:1459-1471.
  • [14]Busch DH, Vijh S, Pamer EG: Animal model for infection with Listeria monocytogenes. In Current protocols in immunology. Edited by Coligan JE. Hoboken, USA: John Wiley & Sons, Inc; 2001. Chapter 19: Unit 19.9
  • [15]O’Neil HS, Marquis H: Listeria monocytogenes flagella are used for motility, not as adhesins, to increase host cell invasion. Infect Immun 2006, 74:6675-6681.
  • [16]Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A: The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001, 410:1099-1103.
  • [17]Dons L, Eriksson E, Jin Y, Rottenberg ME, Kristensson K, Larsen CN, Bresciani J, Olsen JE: Role of flagellin and the two-component CheA/CheY system of Listeria monocytogenes in host cell invasion and virulence. Infect Immun 2004, 72:3237-3244.
  • [18]Bigot A, Pagniez H, Botton E, Frehel C, Dubail I, Jacquet C, Charbit A, Raynaud C: Role of FliF and FliI of Listeria monocytogenes in flagellar assembly and pathogenicity. Infect Immun 2005, 73:5530-5539.
  • [19]Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, Liu L, Shao F: The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 2011, 477:596-600.
  • [20]Grundling A, Burrack LS, Bouwer HG, Higgins DE: Listeria monocytogenes regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence. Proc Natl Acad Sci USA 2004, 101:12318-12323.
  • [21]Way SS, Thompson LJ, Lopes JE, Hajjar AM, Kollmann TR, Freitag NE, Wilson CB: Characterization of flagellin expression and its role in Listeria monocytogenes infection and immunity. Cell Microbiol 2004, 6:235-242.
  文献评价指标  
  下载次数:46次 浏览次数:17次