| Journal of Translational Medicine | |
| Oxidative stress and apoptosis in a pig model of brain death (BD) and living donation (LD) | |
| Vanessa Stadlbauer1  Florian Iberer4  Siglinde Zelzer2  Nadia Dandachi7  Elke Stadelmeyer7  Bettina Leber1  Iris Wiederstein-Grasser3  Thomas Seifert-Held6  Andrea Bradatsch5  Andreas Puntschart5  Michael Sereinigg4  Philipp Stiegler4  | |
| [1] Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University, Graz, Austria;Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University, Graz, Austria;Division of Biomedical Research and Section for Surgical Research, Medical University, Graz, Austria;Division of Surgery, Department of Transplantation Surgery, Medical University, Auenbruggerplatz 29, Graz 8036, Austria;Department of General Surgery, Medical University, Graz, Austria;Department of Neurology, Medical University, Graz, Austria;Department of Internal Medicine, Division of Oncology, Medical University, Graz, Austria | |
| 关键词: Apoptosis; Oxidative stress; Living donation; Brain death; Organ donation; | |
| Others : 826074 DOI : 10.1186/1479-5876-11-244 |
|
| received in 2013-08-05, accepted in 2013-10-01, 发布年份 2013 | |
PDF
|
|
【 摘 要 】
Background
As organ shortage is increasing, the acceptance of marginal donors increases, which might result in poor organ function and patient survival. Mostly, organ damage is caused during brain death (BD), cold ischemic time (CIT) or after reperfusion due to oxidative stress or the induction of apoptosis. The aim of this study was to study a panel of genes involved in oxidative stress and apoptosis and compare these findings with immunohistochemistry from a BD and living donation (LD) pig model and after cold ischemia time (CIT).
Methods
BD was induced in pigs; after 12 h organ retrieval was performed; heart, liver and kidney tissue specimens were collected in the BD (n = 6) and in a LD model (n = 6). PCR analysis for NFKB1, GSS, SOD2, PPAR-alpha, OXSR1, BAX, BCL2L1, and HSP 70.2 was performed and immunohistochemistry used to show apoptosis and nitrosative stress induced cell damage.
Results
In heart tissue of BD BAX, BCL2L1 and HSP 70.2 increased significantly after CIT. Only SOD2 was over-expressed after CIT in BD liver tissue. In kidney tissue, BCL2L1, NFKB, OXSR1, SOD2 and HSP 70.2 expression was significantly elevated in LD. Immunohistochemistry showed a significant increase in activated Caspase 3 and nitrotyrosine positive cells after CIT in BD in liver and in kidney tissue but not in heart tissue.
Conclusion
The up-regulation of protective and apoptotic genes seems to be divergent in the different organs in the BD and LD setting; however, immunohistochemistry revealed more apoptotic and nitrotyrosine positive cells in the BD setting in liver and kidney tissue whereas in heart tissue both BD and LD showed an increase.
【 授权许可】
2013 Stiegler et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140713083139366.pdf | 1793KB | ||
| Figure 4. | 58KB | Image | |
| Figure 3. | 57KB | Image | |
| Figure 2. | 144KB | Image | |
| Figure 1. | 58KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Terasaki PI, Cecka JM, Gjertson DW, Takemoto S: High survival rates of kidney transplants from spousal and living unrelated donors. N Engl J Med 1995, 333:333-336.
- [2]Herijgers P, Leunens V, Tjandra-Maga TB, Mubagwa K, Flameng W: Changes in organ perfusion after brain death in the rat and its relation to circulating catecholamines. Transplantation 1996, 62:330-335.
- [3]Dutkiewicz G, Domanski L, Binczak-Kuleta A, Pawlik A, Safranow K, Dziedziejko V, Wisniewska M, Ciechanowicz A, Ciechanowski K: Lack of association of polymorphisms 239 + 34A/C in the SOD1 gene and 47C/T in the SOD2 gene with delayed graft function and acute and chronic rejection of kidney allografts. Transplant Proc 2009, 41:3701-3703.
- [4]Pratschke S, Bilzer M, Grutzner U, Angele M, Tufman A, Jauch KW, Schauer RJ: Tacrolimus preconditioning of rat liver allografts impacts glutathione homeostasis and early reperfusion injury. J Surg Res 2012, 176:309-316.
- [5]van Dullemen LF, Bos EM, Schuurs TA, Kampinga HH, Ploeg RJ, van Goor H, Leuvenink HG: Brain death induces renal expression of heme oxygenase-1 and heat shock protein 70. J Transl Med 2013, 11:22.
- [6]Van Der Hoeven JA, Moshage H, Schuurs T, Nijboer M, Van Schilfgaarde R, Ploeg RJ: Brain death induces apoptosis in donor liver of the rat. Transplantation 2003, 76:1150-1154.
- [7]Wu C, Wang P, Rao J, Wang Z, Zhang C, Lu L, Zhang F: Triptolide alleviates hepatic ischemia/reperfusion injury by attenuating oxidative stress and inhibiting NF-kappaB activity in mice. J Surg Res 2011, 166:e205-e213.
- [8]Qiu J, Li W, Feng S, Wang M, He Z: Transplantation of bone marrow-derived endothelial progenitor cells attenuates cerebral ischemia and reperfusion injury by inhibiting neuronal apoptosis, oxidative stress and nuclear factor-kappaB expression. Int J Mol Med 2013, 31:91-98.
- [9]Cicora F, Roberti J, Lausada N, Gonzalez P, Guerrieri D, Stringa P, Cicora P, Vasquez D, Gonzalez I, Palti G, et al.: Donor preconditioning with rabbit anti-rat thymocyte immunoglobulin ameliorates ischemia reperfusion injury in rat kidney transplantation. Transpl Immunol 2012, 27:1-7.
- [10]Sung FL, Zhu TY, Au-Yeung KK, Siow YL: O K: Enhanced MCP-1 expression during ischemia/reperfusion injury is mediated by oxidative stress and NF-kappaB. Kidney Int 2002, 62:1160-1170.
- [11]Mizuno N, Yoshitomi H, Ishida H, Kuromi H, Kawaki J, Seino Y, Seino S: Altered bcl-2 and bax expression and intracellular Ca2+ signaling in apoptosis of pancreatic cells and the impairment of glucose-induced insulin secretion. Endocrinology 1998, 139:1429-1439.
- [12]Hower R, Minor T, Schneeberger H, Theodorakis J, Rembold S, Illner WD, Hofmann GO, Fraunberger P, Isselhard W, Land W: Assessment of oxygen radicals during kidney transplantation–effect of radical scavenger. Transpl Int 1996, 9(Suppl 1):S479-S482.
- [13]Sanchez-Hidalgo JM, Naranjo A, Ciria R, Ranchal I, Aguilar-Melero P, Ferrin G, Valverde A, Rufian S, Lopez-Cillero P, Muntane J, Briceno J: Impact of age on liver regeneration response to injury after partial hepatectomy in a rat model. J Surg Res 2012, 175:e1-e9.
- [14]Mardones M, Valenzuela R, Romanque P, Covarrubias N, Anghileri F, Fernandez V, Videla LA, Tapia G: Prevention of liver ischemia reperfusion injury by a combined thyroid hormone and fish oil protocol. J Nutr Biochem 2012, 23:1113-1120.
- [15]Kuwabara N, Oyama T, Tomioka D, Ohashi M, Yanagisawa J, Shimizu T, Miyachi H: Peroxisome proliferator-activated receptors (PPARs) have multiple binding points that accommodate ligands in various conformations: phenylpropanoic acid-type PPAR ligands bind to PPAR in different conformations, depending on the subtype. J Med Chem 2012, 55:893-902.
- [16]Cusick JK, Xu LG, Bin LH, Han KJ, Shu HB: Identification of RELT homologues that associate with RELT and are phosphorylated by OSR1. Biochem Biophys Res Commun 2006, 340:535-543.
- [17]Moreno JM, Ruiz MC, Ruiz N, Gomez I, Vargas F, Asensio C, Osuna A: Modulation factors of oxidative status in stable renal transplantation. Transplant Proc 2005, 37:1428-1430.
- [18]Wang X, Son YO, Chang Q, Sun L, Hitron JA, Budhraja A, Zhang Z, Ke Z, Chen F, Luo J, Shi X: NADPH oxidase activation is required in reactive oxygen species generation and cell transformation induced by hexavalent chromium. Toxicol Sci 2011, 123:399-410.
- [19]Lee LY, Kaizu T, Toyokawa H, Zhang M, Ross M, Stolz DB, Huang C, Gandhi C, Geller DA, Murase N: Carbon monoxide induces hypothermia tolerance in Kupffer cells and attenuates liver ischemia/reperfusion injury in rats. Liver Transpl 2011, 17:1457-1466.
- [20]Massoud O, Heimbach J, Viker K, Krishnan A, Poterucha J, Sanchez W, Watt K, Wiesner R, Charlton M: Noninvasive diagnosis of acute cellular rejection in liver transplant recipients: a proteomic signature validated by enzyme-linked immunosorbent assay. Liver Transpl 2011, 17:723-732.
- [21]Animals Guide for the Care and Use of Laboratory Animals. 8th edition. Washington D.C., USA: National Academies Press; 2011.
- [22]Stadlbauer V, Stiegler P, Taeubl P, Sereinigg M, Puntschart A, Bradatsch A, Curcic P, Seifert-Held T, Zmugg G, Stojakovic T, et al.: Energy status of pig donor organs after ischemia is independent of donor type. J Surg Res 2012, 180:356-367.
- [23]Eurotransplant guidelines: Eurotransplant Manual Version. 2011.
- [24]Sereinigg M, Stiegler P, Puntschart A, Seifert-Held T, Zmugg G, Wiederstein-Grasser I, Marte W, Marko T, Bradatsch A, Tscheliessnigg K, Stadlbauer-Kollner V: Establishing a brain-death donor model in pigs. Transplant Proc 2012, 44:2185-2189.
- [25]Drenthen J, van Hulst RA, Blok JH, van Heel MD, Haitsma JJ, Lachmann B, Visser GH: Quantitative EEG monitoring during cerebral air embolism and hyperbaric oxygen treatment in a pig model. J Clin Neurophysiol 2003, 20:264-272.
- [26]Pilz J, Meineke I, Gleiter CH: Measurement of free and bound malondialdehyde in plasma by high-performance liquid chromatography as the 2,4-dinitrophenylhydrazine derivative. J Chromatogr B Biomed Sci Appl 2000, 742:315-325.
- [27]Koestenbauer S, Stiegler P, Stadlbauer V, Mayrhauser U, Leber B, Schweiger M, Wasler A, Prenner G, Sereinigg M, Zelzer S, et al.: Myeloperoxidase and carbonyl proteins: promising markers for non-invasive monitoring of graft rejection after heart transplantation. J Heart Lung Transplant 2010, 29:1352-1357.
- [28]Zelzer S, Stiegler P, Kapitan M, Schaffellner S, Schweiger M, Stettin M, Stojakovic T, Truschnig-Wilders M, Tscheliessnigg KH, Khoschsorur G: Myeloperoxidase as serum marker for detection of CMV infections and rejections in patients after liver or heart transplantation. Transpl Immunol 2009, 20:121-126.
- [29]Nygard AB, Jorgensen CB, Cirera S, Fredholm M: Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR. BMC Mol Biol 2007, 8:67.
- [30]Cicora F, Stringa P, Guerrieri D, Roberti J, Ambrosi N, Toniolo F, Cicora P, Palti G, Vasquez D, Raimondi C: Amelioration of renal damage by administration of anti-thymocyte globulin to potential donors in a brain death rat model. Clin Exp Immunol 2012, 169:330-337.
- [31]Cicora F, Roberti J, Vasquez D, Guerrieri D, Lausada N, Cicora P, Palti G, Chuluyan E, Gonzalez P, Stringa P, Raimondi C: Preconditioning donor with a combination of tacrolimus and rapamacyn to decrease ischaemia-reperfusion injury in a rat syngenic kidney transplantation model. Clin Exp Immunol 2012, 167:169-177.
- [32]Feng S: Donor intervention and organ preservation: where is the science and what are the obstacles? Am J Transplant 2010, 10:1155-1162.
- [33]Damman J, Hoeger S, Boneschansker L, Theruvath A, Waldherr R, Leuvenink HG, Ploeg RJ, Yard BA, Seelen MA: Targeting complement activation in brain-dead donors improves renal function after transplantation. Transpl Immunol 2011, 24:233-237.
- [34]Paller MS: Acute renal failure: controversies, clinical trials, and future directions. Semin Nephrol 1998, 18:482-489.
- [35]Tasdemir C, Tasdemir S, Vardi N, Ates B, Parlakpinar H, Kati B, Karaaslan MG, Acet A: Protective effect of infliximab on ischemia/reperfusion-induced damage in rat kidney. Ren Fail 2012, 34:1144-1149.
- [36]Jaeschke H, Woolbright BL: Current strategies to minimize hepatic ischemia-reperfusion injury by targeting reactive oxygen species. Transplant Rev (Orlando) 2012, 26:103-114.
- [37]Kim JS, Nitta T, Mohuczy D, O'Malley KA, Moldawer LL, Dunn WA Jr, Behrns KE: Impaired autophagy: A mechanism of mitochondrial dysfunction in anoxic rat hepatocytes. Hepatology 2008, 47:1725-1736.
- [38]Klaassen CD, Reisman SA: Nrf2 the rescue: effects of the antioxidative/electrophilic response on the liver. Toxicol Appl Pharmacol 2010, 244:57-65.
- [39]Kensler TW, Wakabayashi N, Biswal S: Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 2007, 47:89-116.
- [40]Pratschke S, Angele MK, Grutzner U, Tufman A, Bilzer M, Loehe F, Jauch KW, Schauer RJ: GSH attenuates organ injury and improves function after transplantation of fatty livers. Eur Surg Res 2010, 45:13-19.
- [41]Atalla SL, Toledo-Pereyra LH, MacKenzie GH, Cederna JP: Influence of oxygen-derived free radical scavengers on ischemic livers. Transplantation 1985, 40:584-590.
- [42]Suzuki M, Takeuchi H, Kakita T, Unno M, Katayose Y, Matsuno S: The involvement of the intracellular superoxide production system in hepatic ischemia-reperfusion injury. In vivo and in vitro experiments using transgenic mice manifesting excessive CuZn-SOD activity. Free Radic Biol Med 2000, 29:756-763.
- [43]Land W, Schneeberger H, Schleibner S, Illner WD, Abendroth D, Rutili G, Arfors KE, Messmer K: The beneficial effect of human recombinant superoxide dismutase on acute and chronic rejection events in recipients of cadaveric renal transplants. Transplantation 1994, 57:211-217.
- [44]Chen W, Yazicioglu M, Cobb MH: Characterization of OSR1, a member of the mammalian Ste20p/germinal center kinase subfamily. J Biol Chem 2004, 279:11129-11136.
- [45]Hendrick JP, Hartl FU: Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 1993, 62:349-384.
- [46]Riordan M, Sreedharan R, Wang S, Thulin G, Mann A, Stankewich M, Van Why S, Kashgarian M, Siegel NJ: HSP70 binding modulates detachment of Na-K-ATPase following energy deprivation in renal epithelial cells. Am J Physiol Renal Physiol 2005, 288:F1236-F1242.
- [47]Asea A: Hsp72 release: mechanisms and methodologies. Methods 2007, 43:194-198.
- [48]Zhu J, Quyyumi AA, Wu H, Csako G, Rott D, Zalles-Ganley A, Ogunmakinwa J, Halcox J, Epstein SE: Increased serum levels of heat shock protein 70 are associated with low risk of coronary artery disease. Arterioscler Thromb Vasc Biol 2003, 23:1055-1059.
- [49]Dulin E, Garcia-Barreno P, Guisasola MC: Extracellular heat shock protein 70 (HSPA1A) and classical vascular risk factors in a general population. Cell Stress Chaperones 2010, 15:929-937.
- [50]Zhang X, Xu Z, Zhou L, Chen Y, He M, Cheng L, Hu FB, Tanguay RM, Wu T: Plasma levels of Hsp70 and anti-Hsp70 antibody predict risk of acute coronary syndrome. Cell Stress Chaperones 2010, 15:675-686.
- [51]Kume M, Yamamoto Y, Saad S, Gomi T, Kimoto S, Shimabukuro T, Yagi T, Nakagami M, Takada Y, Morimoto T, Yamaoka Y: Ischemic preconditioning of the liver in rats: implications of heat shock protein induction to increase tolerance of ischemia-reperfusion injury. J Lab Clin Med 1996, 128:251-258.
- [52]Asea A: Heat shock proteins and toll-like receptors. Handb Exp Pharmacol 2008, 183:111-127.
- [53]O'Neill S, Ross JA, Wigmore SJ, Harrison EM: The role of heat shock protein 90 in modulating ischemia-reperfusion injury in the kidney. Expert Opin Investig Drugs 2012, 21:1535-1548.
- [54]Issemann I, Prince RA, Tugwood JD, Green S: The peroxisome proliferator-activated receptor:retinoid X receptor heterodimer is activated by fatty acids and fibrate hypolipidaemic drugs. J Mol Endocrinol 1993, 11:37-47.
- [55]Chinetti G, Fruchart JC, Staels B: Peroxisome proliferator-activated receptors: new targets for the pharmacological modulation of macrophage gene expression and function. Curr Opin Lipidol 2003, 14:459-468.
- [56]Chinetti G, Griglio S, Antonucci M, Torra IP, Delerive P, Majd Z, Fruchart JC, Chapman J, Najib J, Staels B: Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages. J Biol Chem 1998, 273:25573-25580.
- [57]Cunard R: The potential use of PPARalpha agonists as immunosuppressive agents. Curr Opin Investig Drugs 2005, 6:467-472.
- [58]Marx N, Kehrle B, Kohlhammer K, Grub M, Koenig W, Hombach V, Libby P, Plutzky J: PPAR activators as antiinflammatory mediators in human T lymphocytes: implications for atherosclerosis and transplantation-associated arteriosclerosis. Circ Res 2002, 90:703-710.
- [59]Kohli V, Selzner M, Madden JF, Bentley RC, Clavien PA: Endothelial cell and hepatocyte deaths occur by apoptosis after ischemia-reperfusion injury in the rat liver. Transplantation 1999, 67:1099-1105.
- [60]Duan WR, Garner DS, Williams SD, Funckes-Shippy CL, Spath IS, Blomme EA: Comparison of immunohistochemistry for activated caspase-3 and cleaved cytokeratin 18 with the TUNEL method for quantification of apoptosis in histological sections of PC-3 subcutaneous xenografts. J Pathol 2003, 199:221-228.
- [61]Esposito E, Mondello S, Di Paola R, Mazzon E, Italiano D, Paterniti I, Mondello P, Aloisi C, Cuzzocrea S: Glutamine contributes to ameliorate inflammation after renal ischemia/reperfusion injury in rats. Naunyn Schmiedebergs Arch Pharmacol 2011, 383:493-508.
- [62]Sener G, Sehirli O, Velioglu-Ogunc A, Cetinel S, Gedik N, Caner M, Sakarcan A, Yegen BC: Montelukast protects against renal ischemia/reperfusion injury in rats. Pharmacol Res 2006, 54:65-71.
- [63]Atilgan D, Parlaktas BS, Uluocak N, Erdemir F, Firat F, Erkorkmaz U, Saylan O: Effects of melatonin on partial unilateral ureteral obstruction induced oxidative injury in rat kidney. Urol Ann 2012, 4:89-93.
- [64]Elmas O, Caliskan S: Investigation of the oxidative effect of chronic hyperammonemia on the kidney and the possible protective effect of allopurinol. Ren Fail 2011, 33:61-65.
- [65]Sindram D, Rudiger HA, Upadhya AG, Strasberg SM, Clavien PA: Ischemic preconditioning protects against cold ischemic injury through an oxidative stress dependent mechanism. J Hepatol 2002, 36:78-84.
PDF