期刊论文详细信息
Journal of Translational Medicine
Existence of a potential neurogenic system in the adult human brain
Manoel Jacobsen Teixeira5  Paulo Eurípedes Marchiori1  Ariel Barreto Nogueira3  Sheila Aparecida Siqueira3  Alison Colquhoun4  Mari Cleide Sogayar2  Adriano Barreto Nogueira5 
[1] Department of Neurology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil;Cell and Molecular Therapy Center, Faculty of Medicine, University of São Paulo, São Paulo, Brazil;Department of Pathology, Hospital das Clínicas, Faculty of Medicine, University of São Paulo, São Paulo, Brazil;Department of Cellular and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil;Laboratory of Experimental Surgery Research, Hospital das Clínicas, Faculty of Medicine, University of São Paulo, Avenida Dr. Eneas de Carvalho Aguiar 255, 05403-900 São Paulo, Brazil
关键词: Doublecortin;    Nestin;    Hypothalamus;    Hippocampus;    Temporal lobe;    Limbic system;    Adult human brain;    Neural stem cell;    Neurogenesis;    Neurogenic niche;   
Others  :  1148923
DOI  :  10.1186/1479-5876-12-75
 received in 2013-12-25, accepted in 2014-03-13,  发布年份 2014
PDF
【 摘 要 】

Background

Prevailingly, adult mammalian neurogenesis is thought to occur in discrete, separate locations known as neurogenic niches that are best characterized in the subgranular zone (SGZ) of the dentate gyrus and in the subventricular zone (SVZ). The existence of adult human neurogenic niches is controversial.

Methods

The existence of neurogenic niches was investigated with neurogenesis marker immunostaining in histologically normal human brains obtained from autopsies. Twenty-eight adult temporal lobes, specimens from limbic structures and the hypothalamus of one newborn and one adult were examined.

Results

The neural stem cell marker nestin stained circumventricular organ cells and the immature neuronal marker doublecortin (DCX) stained hypothalamic and limbic structures adjacent to circumventricular organs; both markers stained a continuous structure running from the hypothalamus to the hippocampus. The cell proliferation marker Ki-67 was detected predominately in structures that form the septo-hypothalamic continuum. Nestin-expressing cells were located in the fimbria-fornix at the insertion of the choroid plexus; ependymal cells in this structure expressed the putative neural stem cell marker CD133. From the choroidal fissure in the temporal lobe, a nestin-positive cell layer spread throughout the SVZ and subpial zone. In the subpial zone, a branch of this layer reached the hippocampal sulcus and ended in the SGZ (principally in the newborn) and in the subiculum (principally in the adults). Another branch of the nestin-positive cell layer in the subpial zone returned to the optic chiasm. DCX staining was detected in the periventricular and middle hypothalamus and more densely from the mammillary body to the subiculum through the fimbria-fornix, thus running through the principal neuronal pathway from the hippocampus to the hypothalamus. The column of the fornix forms part of this pathway and appears to coincide with the zone previously identified as the human rostral migratory stream. Partial co-labeling with DCX and the neuronal marker βIII-tubulin was also observed.

Conclusions

Collectively, these findings suggest the existence of an adult human neurogenic system that rises from the circumventricular organs and follows, at minimum, the circuitry of the hypothalamus and limbic system.

【 授权许可】

   
2014 Nogueira et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150404234004334.pdf 16334KB PDF download
Figure 13. 184KB Image download
Figure 12. 50KB Image download
Figure 11. 128KB Image download
Figure 10. 298KB Image download
Figure 9. 207KB Image download
Figure 8. 78KB Image download
Figure 7. 81KB Image download
Figure 6. 113KB Image download
Figure 5. 137KB Image download
Figure 4. 72KB Image download
Figure 3. 130KB Image download
Figure 2. 144KB Image download
Figure 1. 134KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

【 参考文献 】
  • [1]Langmoen IA, Apuzzo ML: The brain on itself: nobel laureates and the history of fundamental nervous system function. Neurosurgery 2007, 61:891-907.
  • [2]Curtis MA, Eriksson PS, Faull RLM: Adult human neurogenesis: a response to cell loss and new circuitry requirements? In Adult Neurogenesis. Edited by Gage FH, Kempermann G, Song H. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2008:619-643.
  • [3]Colucci-D’Amato L, Bonavita V, di Porzio U: The end of the central dogma of neurobiology: stem cells and neurogenesis in adult CNS. Neurol Sci 2006, 27:266-270.
  • [4]Altman J: Are new neurons formed in the brains of adult mammals? Science 1962, 135:1127-1128.
  • [5]Goldman SA, Nottebohm F: Neuronal production, migration and differentiation in a vocal control nucleus of the adult female canary brain. Proc Natl Acad Sci U S A 1983, 80:2390-2394.
  • [6]Reynolds BA, Weiss S: Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992, 255:1707-1710.
  • [7]Kirschenbaum B, Nedergaard M, Preuss A, Barami K, Fraser RA, Goldman SA: In vitro neuronal production and differentiation by precursor cells derived from the adult human forebrain. Cereb Cortex 1994, 4:576-589.
  • [8]Farin A, Liu CY, Langmoen IA, Apuzzo MLJ: The biological restoration of central nervous system architecture and function: part 2—emergence of the realization of adult neurogenesis. Neurosurgery 2009, 64:581-601.
  • [9]Blümcke I, Schewe JC, Normann S, Brüstle O, Schramm J, Elger CE, Wiestler OD: Increase of nestin-immunoreactive neural precursor cells in the dentate gyrus of pediatric patients with early-onset temporal lobe epilepsy. Hippocampus 2001, 11:311-321.
  • [10]Curtis MA, Kam M, Nannmark U, Anderson MF, Axell MZ, Wikkelso C, Holtås S, van Roon-Mom WMC, Björk-Eriksson T, Nordborg C, Frisén J, Dragunow M, Faull RLM, Eriksson PS: Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 2007, 315:1243-1249.
  • [11]Sanai N, Nguyen T, Ihrie RA, Mirzadeh Z, Tsai HH, Wong M, Gupta N, Berger MS, Huang E, Garcia-Verdugo JM, Rowitch DH, Alvarez-Buylla A: Corridors of migrating neurons in the human brain and their decline during infancy. Nature 2011, 478:382-386.
  • [12]Sanai N, Tramontin AD, Quiñones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, Lawton MT, McDermott MW, Parsa AT, Manuel-García Verdugo J, Berger MS, Alvarez-Buylla A: Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 2004, 427:740-744.
  • [13]Wang C, Liu F, Liu YY, Zhao CH, You Y, Wang L, Zhang J, Wei B, Ma T, Zhang Q, Zhang Y, Chen R, Song H, Yang Z: Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain. Cell Res 2011, 21:1534-1550.
  • [14]Moe MC, Varghese M, Danilov AI, Westerlund U, Ramm-Pettersen J, Brundin L, Svensson M, Berg-Johnsen J, Langmoen IA: Multipotent progenitor cells from the adult human brain: neurophysiological differentiation to mature neurons. Brain 2005, 128:2189-2199.
  • [15]Arsenijevic Y, Villemure JG, Brunet JF, Bloch JJ, Déglon N, Kostic C, Zurn A, Aebischer P: Isolation of multipotent neural precursors residing in the cortex of the adult human brain. Exp Neurol 2001, 170:48-62.
  • [16]Bernier PJ, Vinet J, Cossette M, Parent A: Characterization of the subventricular zone of the adult human brain: evidence for the involvement of Bcl-2. Neurosci Res 2000, 37:67-78.
  • [17]Quiñones-Hinojosa A, Sanai N, Soriano-Navarro M, Gonzalez-Perez O, Mirzadeh Z, Gil-Perotin S, Romero-Rodriguez R, Berger MS, Garcia-Verdugo JM, Alvarez-Buylla A: Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol 2006, 494:415-434.
  • [18]Waldvogel HJ, Curtis MA, Baer K, Rees MI, Faull RL: Immunohistochemical staining of post-mortem adult human brain sections. Nat Protoc 2006, 1:2719-2132.
  • [19]Wen HT, Rhoton AL Jr, de Oliveira E, Cardoso AC, Tedeschi H, Baccanelli M, Marino R Jr: Microsurgical anatomy of the temporal lobe: part 1: mesial temporal lobe anatomy and its vascular relationships as applied to amygdalohyppocampectomy. Neurosurgery 1999, 45:549-591.
  • [20]Bennett L, Yang M, Enikolopov G, Iacovitti L: Circumventricular organs: a novel site of neural stem cells in the adult brain. Mol Cell Neurosci 2009, 41:337-347.
  • [21]Lehtinen MK, Zappaterra MW, Chen X, Yang YJ, Hill AD, Lun M, Maynard T, Gonzalez D, Kim S, Ye P, D’Ercole AJ, Wong ET, LaMantia AS, Walsh CA: The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 2011, 69:893-905.
  • [22]Swanson LW: Brain Architecture. New York: Oxford University Press; 2012.
  • [23]Buchwalow IB, Böcker W: Immuno-histochemistry: Basics and Methods. Berlin: Springer; 2010.
  • [24]McKay BE, Molineux ML, Turner RW: Endogenous biotin in rat brain: implications for false-positive results with avidin-biotin and streptavidin-biotin techniques. Methods Mol Biol 2008, 418:111-128.
  • [25]Amaral D, Lavenex P: Hippocampal neuroanatomy. In The Hippocampus Book. Edited by Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J. New York: Oxford University Press; 2007:37-114.
  • [26]Duvernoy H: The Human Hippocampus. Berlin: Springer; 2005.
  • [27]Gloor P: The amygdaloid system. In The Temporal and Limbic System. Edited by Gloor P. New York: Oxford University Press; 1997:591-721.
  • [28]Mai JK, Paxinos G, Voss T: Atlas of the Human Brain. Amsterdam: Elsevier; 2008.
  • [29]Lautin A: Broca’s lobe. In The Limbic Brain. Edited by Lautin A. New York: Kluwer Academics / Plenum Publishers; 2001:1-53.
  • [30]Nauta WJ: Hippocampal projections and related pathways to the midbrain in the cat. Brain 1958, 81:319-340.
  • [31]Canteras NS, Swanson LW: Projections of the ventral subiculum to the amygdala, septum, and hypothalamus: a PHAL anterograde tract-tracing study in the rat. J Comp Neurol 1992, 324:180-194.
  • [32]Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH: Neurogenesis in the adult human hippocampus. Nat Med 1998, 4:1313-1317.
  • [33]Ghorpade A, Bruch L, Persidsky Y, Chin B, Brown WHC, Borgmann K, Persidsky R, Wu L, Holter S, Cotter R, Faraci J, Heilman D, Meyer V, Potter JF, Swindells S, Gendelman HE: Development of a rapid autopsy program for studies of brain immunity. J Neuroimmunol 2005, 163:134-144.
  • [34]Kretzschmar H: Brain banking: opportunities, challenges and meaning for the future. Nat Rev Neurosci 2009, 10:70-77.
  • [35]Swaab DF: Introduction. In The Human Hypothalamus: Basic and Clinical Aspects. Part I: Nuclei of the Human Hypothalamus. Edited by Swaab DF. Amsterdam: Elsevier; 2003:3-38.
  • [36]Korzhevskii DE, Gilyarov A: Optimization of a method for the immunocytochemical detection of nestin in paraffin sections of the rat brain. Neurosci Behav Physiol 2008, 38:135-137.
  • [37]Dahlström A, Fuxe K: Localization of monoamines in the lower brain stem. Experientia 1964, 20:398-399.
  • [38]Kang JO, Kim SK, Hong SE, Lee TH, Kim CJ: Low dose radiation overcomes diabetes-induced suppression of hippocampal neuronal cell proliferation in rats. J Korean Med Sci 2006, 21:500-505.
  • [39]Vinters HV, Kleinschmidt-DeMasters BK: General pathology of the central nervous system. In Greenfield’s neuropathology. Edited by Love S, Louis DN, Ellison DW. London: Hodder Arnold; 2008:1-62.
  • [40]Kosik KS: Study neuron networks to tackle Alzheimer’s. Nature 2013, 503:31-32.
  • [41]Wiese C, Rolletschek A, Kania G, Blyszczuk P, Tarasov KV, Tarasova Y, Wersto RP, Boheler KR, Wobus AM: Nestin expression—a property of multi-lineage progenitor cells? Cell Mol Life Sci 2004, 61:2510-2522.
  • [42]Gu H, Wang S, Messam CA, Yao Z: Distribution of nestin immunoreactivity in the normal adult human forebrain. Brain Res 2002, 943:174-180.
  • [43]Palmer TD, Willhoite AR, Gage FH: Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 2000, 425:479-494.
  • [44]Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, Bogdahn U, Winkler J, Kuhn HG, Aigner L: Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci 2005, 21:1-14.
  • [45]Guo F, Maeda Y, Ma J, Xu J, Horiuchi M, Miers L, Vaccarino F, Pleasure D: Pyramidal neurons are generated from oligodendroglial progenitor cells in adult piriform cortex. J Neurosci 2010, 30:12036-12049.
  • [46]Verwer RW, Sluiter AA, Balesar RA, Baayen JC, Noske DP, Dirven CM, Wouda J, van Dam AM, Lucassen PJ, Swaab DF: Mature astrocytes in the adult human neocortex express the early neuronal marker doublecortin. Brain 2007, 130:3321-3335.
  • [47]Knoth R, Singec I, Ditter M, Pantazis G, Capetian P, Meyer RP, Horvat V, Volk B, Kempermann G: Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS One 2010, 5:e8809.
  • [48]Kuo CT, Mirzadeh Z, Soriano-Navarro M, Rasin M, Wang D, Shen J, Sestan N, Garcia-Verdugo J, Alvarez-Buylla A, Jan LY, Jan YN: Postnatal deletion of Numb/Numblike reveals repair and remodeling capacity in the subventricular neurogenic niche. Cell 2006, 127:1253-1264.
  • [49]Sawamoto K, Wichterle H, Gonzalez-Perez O, Cholfin JA, Yamada M, Spassky N, Murcia NS, Garcia-Verdugo JM, Marin O, Rubenstein JL, Tessier-Lavigne M, Okano H, Alvarez-Buylla A: New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 2006, 311:629-632.
  • [50]Carlén M, Meletis K, Göritz C, Darsalia V, Evergren E, Tanigaki K, Amendola M, Barnabé-Heider F, Yeung MS, Naldini L, Honjo T, Kokaia Z, Shupliakov O, Cassidy RM, Lindvall O, Frisén J: Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke. Nat Neurosci 2009, 12:259-267.
  • [51]Chojnacki AK, Mak GK, Weiss S: Identity crisis for adult periventricular neural stem cells: subventricular zone astrocytes, ependymal cells or both? Nat Rev Neurosci 2009, 10:153-163.
  • [52]McKinley MJ, Clarke IJ, Oldfield BJ: Circumventricular organs. In The Human Nervous System. Edited by Mai JK, Paxinos G. Amsterdam: Elsevier; 2012:594-617.
  • [53]Chouaf-Lakhdar L, Fèvre-Montange M, Brisson C, Strazielle N, Gamrani H, Didier-Bazès M: Proliferative activity and nestin expression in periventricular cells of the adult rat brain. Neuroreport 2003, 14:633-636.
  • [54]Gould E: Structural plasticity. In The Hippocampus Book. Edited by Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J. New York: Oxford University Press; 2007:321-342.
  • [55]Doetsch F, García-Verdugo JM, Alvarez-Buylla A: Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 1997, 17:5046-5061.
  • [56]Swaab DF: Supraoptic and paraventricular nucleus (SON, PVN). In The Human Hypothalamus: Basic and Clinical Aspects. Part I: Nuclei of the Human Hypothalamus. Edited by Swaab DF. Amsterdam: Elsevier; 2003:163-238.
  • [57]Marin JH: The hypothalamus and regulation of bodily functions. In Neuroanatomy: Text and Atlas. 4th edition. Edited by Martin JH. New York: McGraw-Hill; 2012:355-384.
  • [58]Zhang X, Jin G, Li W, Zou L, Shi J, Qin J, Tian M, Li H: Ectopic neurogenesis in the forebrain cholinergic system-related areas of a rat dementia model. Stem Cells Dev 2011, 20:1627-1638.
  • [59]Popescu BO, Gherghiceanu M, Kostin S, Ceafalan L, Popescu LM: Telocytes in meninges and choroid plexus. Neurosci Lett 2012, 516:265-269.
  • [60]Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weisman IL: Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A 2000, 97:14720-14725.
  • [61]Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB: Identification of human brain tumour initiating cells. Nature 2004, 432:396-401.
  • [62]Itokazu Y, Kitada M, Dezawa M, Mizoguchi A, Matsumoto N, Shimizu A, Ide C: Choroid plexus ependymal cells host neural progenitor cells in the rat. Glia 2006, 53:32-42.
  • [63]Snapyan M, Lemasson M, Brill MS, Blais M, Massouh M, Ninkovic J, Gravel C, Berthod F, Götz M, Barker PA, Parent A, Saghatelyan A: Vasculature guides migrating neuronal precursors in the adult mammalian forebrain via brain-derived neurotrophic factor signaling. J Neurosci 2009, 29:4172-4188.
  • [64]Alliot F, Rutin J, Leenen PJ, Pessac B: Pericytes and periendothelial cells of brain parenchyma vessels co-express aminopeptidase N, aminopeptidase A, and nestin. J Neurosci Res 1999, 58:367-378.
  • [65]Iadecola C, Nedergaard M: Glial regulation of the brain microvasculature. Nat Neurosci 2007, 10:1369-1376.
  • [66]Costa MR, Kessaris N, Richardson WD, Götz M, Hedin-Pereira C: The marginal zone/layer I as a novel niche for neurogenesis and gliogenesis in developing brain cortex. J Neurosci 2007, 27:11376-11388.
  • [67]Hansen DV, Lui JH, Parker PR, Kriegstein AR: Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 2010, 464:554-561.
  • [68]Bifari F, Decimo I, Chiamulera C, Bersan E, Malpeli G, Johansson J, Lisi V, Bonetti B, Fumagalli G, Pizzolo G, Krampera M: Novel stem/progenitor cells with neuronal differentiation potential reside in the leptomeningeal niche. J Cell Mol Med 2009, 13:3195-3208.
  • [69]Ohira K, Furuta T, Hioki H, Nakamura KC, Kuramoto E, Tanaka Y, Funatsu N, Shimizu K, Oishi T, Hayashi M, Miyakawa T, Kaneko T, Nakamura S: Ischemia-induced neurogenesis of neocortical layer 1 progenitor cells. Nat Neurosci 2010, 13:173-179.
  • [70]Decimo I, Bifari F, Rodriguez FJ, Malpeli G, Dolci S, Lavarini V, Pretto S, Vasquez S, Sciancalepore M, Montalbano A, Berton V, Krampera M, Fumagalli G: Nestin-and doublecortin-positive cells reside in adult spinal cord meninges and participate in injury-induced parenchymal reaction. Stem Cells 2011, 29:2062-2076.
  • [71]Petricevic J, Forempoher G, Ostojic L, Mardesic-Brakus S, Andjelinovic S, Vukojevic K, Saraga-Babic M: Expression of nestin, mesothelin and epithelial membrane antigen (EMA) in developing and adult human meninges and meningiomas. Acta Histochem 2011, 113:703-711.
  • [72]Decimo I, Bifari F, Krampera M, Fumagalli G: Neural stem cell niches in health and diseases. Curr Pharm Des 2012, 18:1755-1783.
  • [73]Nakagomi T, Molnár Z, Nakano-Doi A, Taguchi A, Saino O, Kubo S, Clausen M, Yoshikawa H, Nakagomi N, Matsuyama T: Ischemia-induced neural stem/progenitor cells in the pia mater following cortical infarction. Stem Cells Dev 2011, 20:2037-2051.
  • [74]Petit A, Sanders AD, Kennedy TE, Tetzlaff W, Glattfelder KJ, Dalley RA, Puchalski RB, Jones AR, Roskams AJ: Adult spinal cord radial glia display a unique progenitor phenotype. PLoS One 2011, 6:e24538.
  • [75]Ponti G, Crociara P, Armentano M, Bonfanti L: Adult neurogenesis without germinal layers: the “atypical” cerebellum of rabbits. Arch Ital Biol 2010, 148:147-158.
  • [76]Roelofs RF, Fischer DF, Houtman SH, Sluijs JA, Van Haren W, Van Leeuwen FW, Hol EM: Adult human subventricular, subgranular, and subpial zones contain astrocytes with a specialized intermediate filament cytoskeleton. Glia 2005, 52:289-300.
  • [77]Crespel A, Rigau V, Coubes P, Rousset MC, de Bock F, Okano H, Baldy-Moulinier M, Bockaert J, Lerner-Natoli M: Increased number of neural progenitors in human temporal lobe epilepsy. Neurobiol Dis 2005, 19:436-450.
  • [78]Yanamoto H, Miyamoto S, Tohnai N, Nagata I, Xue JH: Induced spreading depression activates persistent neurogenesis in the subventricular zone, generating cells with markers for divided and early committed neurons in the caudate putamen and cortex. Stroke 2005, 36:1544-1550.
  • [79]Urbach A, Redecker C, Witte OW: Induction of neurogenesis in the adult dentate gyrus by cortical spreading depression. Stroke 2008, 39:3064-3072.
  • [80]Xue JH, Yanamoto H, Nakajo Y, Tohnai N, Nakano Y: Induced spreading depression evokes cell division of astrocytes in the subpial zone, generating neural precursor-like cells and new immature neurons in the adult brain cortex. Stroke 2009, 40:e606-e613.
  • [81]Lu P, Wang Y, Graham L, McHale K, Gao M, Wu D, Brock J, Blesch A, Rosenzweig ES, Havton LA, Zheng B, Conner JM, Marsala M, Tuszynski MH: Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 2012, 150:1264-1273.
  • [82]Kohler SJ, Williams NI, Stanton GB, Cameron JL, Greenough WT: Maturation time of new granule cells in the dentate gyrus of adult macaque monkeys exceeds six months. Proc Natl Acad Sci U S A 2011, 108:10326-10331.
  • [83]Mira H, Andreu Z, Suh H, Lie DC, Jessberger S, Consiglio A, San Emeterio J, Hortigüela R, Marqués-Torrejón MA, Nakashima K, Colak D, Götz M, Fariñas I, Gage FH: Signaling through BMPR-IA regulates quiescence and long-term activity of neural stem cells in the adult hippocampus. Cell Stem Cell 2010, 7:78-89.
  • [84]Altman J: Autoradiographic investigation of cell proliferation in the brains of rats and cats. Anat Rec 1963, 145:573-591.
  • [85]Cifuentes M, Pérez-Martín M, Grondona JM, López-Ávalos MD, Inagaki N, Granados-Durán P, Rivera P, Fernández-Llebrez P: A comparative analysis of intraperitoneal versus intracerebroventricular administration of bromodeoxyuridine for the study of cell proliferation in the adult rat brain. J Neurosci Methods 2011, 201:307-314.
  • [86]Marichal N, García G, Radmilovich M, Trujillo-Cenóz O, Russo RE: Enigmatic central canal contacting cells: immature neurons in “standby mode”? J Neurosci 2009, 29:10010-10024.
  • [87]Gomez-Climent MA, Guirado R, Varea E, Nacher J: “Arrested development”: immature, but not recently generated, neurons in the adult brain. Arch Ital Biol 2010, 148:159-172.
  • [88]Bernier PJ, Parent A: Bcl-2 protein as a marker of neuronal immaturity in postnatal primate brain. J Neurosci 1998, 18:2486-2497.
  • [89]Swaab DF: Islands of Calleja, insulae terminalis. In The Human Hypothalamus: Basic and Clinical Aspects. Part I: Nuclei of the Human Hypothalamus. Edited by Swaab DF. Amsterdam: Elsevier; 2003:61-62.
  • [90]Agnati LF, Guidolin D, Guescini M, Genedani S, Fuxe K: Understanding wiring and volume transmission. Brain Res Rev 2010, 64:137-159.
  • [91]Fung SJ, Joshi D, Allen KM, Sivagnanasundaram S, Rothmond DA, Saunders R, Noble PL, Webster MJ, Weickert CS: Developmental patterns of doublecortin expression and white matter neuron density in the postnatal primate prefrontal cortex and schizophrenia. PLoS One 2011, 6:e25194.
  • [92]Li Y, Lu H, Cheng PL, Ge S, Xu H, Shi SH, Dan Y: Clonally related visual cortical neurons show similar stimulus feature selectivity. Nature 2012, 486:118-121.
  • [93]Bellesi M, Pfister-Genskow M, Maret S, Keles S, Tononi G, Cirelli C: Effects of sleep and wake on oligodendrocytes and their precursors. J Neurosci 2013, 33:14288-14300.
  • [94]Hazlerigg DG, Lincoln GA: Hypothesis: cyclical histogenesis is the basis of circannual timing. J Biol Rhythms 2011, 26:471-485.
  • [95]Bouab M, Paliouras GN, Aumont A, Forest-Bérard K, Fernandes KJ: Aging of the subventricular zone neural stem cell niche: evidence for quiescence-associated changes between early and mid-adulthood. Neuroscience 2011, 173:135-149.
  • [96]Wen HT, Rhoton AL Jr, de Oliveira E: Transchoroidal approach to the third ventricle: an anatomic study of the choroidal fissure and its clinical application. Neurosurgery 1998, 42:1205-1217.
  • [97]Ellison DW, Perry A, Rosenblum M, Asa S, Reid R, Louis DN: Tumours: non-neuroepithelial tumours and secondary effects. In Greenfield’s Neuropathology. Edited by Love S, Louis DN, Ellison DW. London: Hodder Arnold; 2008:2002-2182.
  • [98]Mercier F, Arikawa-Hirasawa E: Heparan sulfate niche for cell proliferation in the adult brain. Neurosci Lett 2012, 510:67-72.
  • [99]Jahanshahi A, Temel Y, Lim LW, Hoogland G, Steinbusch HW: Close communication between the subependymal serotonergic plexus and the neurogenic subventricular zone. J Chem Neuroanat 2011, 42:297-303.
  • [100]Gould E, Reeves AJ, Graziano MS, Gross CG: Neurogenesis in the neocortex of adult primates. Science 1999, 286:548-552.
  • [101]Lautin A: MacLeans’s limbic system. In The limbic brain. Edited by Lautin A. New York: Kluwer Academics / Plenum Publishers; 2001:69-98.
  • [102]Zhang G, Li J, Purkayastha S, Tang Y, Zhang H, Yin Y, Li B, Liu G, Cai D: Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature 2013, 497:211-216.
  • [103]Registro Brasileiro de Ensaios Clínicos http://www.ensaiosclinicos.gov.br/rg/RBR-55t5v9/ webcite
  文献评价指标  
  下载次数:92次 浏览次数:13次