期刊论文详细信息
Italian Journal of Pediatrics
Cranial ultrasound findings in late preterm infants and correlation with perinatal risk factors
Fabio Mosca1  Fabio Triulzi2  Dario Consonni3  Alessandra Ometto1  Michela Groppo1  Ida Sirgiovanni1  Silvia Pisoni1  Francesca Dessimone1  Pietro Farè1  Laura Bassi1  Agnese De Carli1  Luca Antonio Ramenghi4  Monica Fumagalli1 
[1] NICU, Department of Clinical Sciences and Community Health, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy;Division of Neuroradiology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milano, Milan, Italy;Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico and Department of Occupational and Environmental Health, Unit of Epidemiology, Milan, Italy;Neonatal Intensive Care Unit, Giannina Gaslini Paediatric Institute, IGG IRCCS, Genoa, Italy
关键词: Perinatal risk factors;    Brain injury;    Cranial ultrasound;    Late preterm infant;   
Others  :  1232905
DOI  :  10.1186/s13052-015-0172-0
 received in 2015-05-27, accepted in 2015-09-11,  发布年份 2015
PDF
【 摘 要 】

Background

Late preterm infants are the most represented premature babies. They are exposed to a wide spectrum of brain lesions which are often clinically silent, supporting a possible role of cerebral ultrasound screening. Aim of the study is to describe the pattern of cranial ultrasound abnormalities in late preterm infants and to define the need for cranial ultrasound according to perinatal risk factors.

Methods

A hospital-based cranial ultrasound screening was carried out by performing two scans (at 1 and 5 weeks). Unfavorable cranial ultrasound at 5 weeks was defined as either persistent periventricular hyperechogenicity or severe abnormalities.

Results

One thousand one hundred seventy-two infants were included. Periventricular hyperechogenicity and severe abnormalities were observed in, respectively, 19.6 % and 1 % of late preterms at birth versus 1.8 % and 1.4 % at 5 weeks. Periventricular hyperechogenicity resolved in 91.3 %. At the univariate analysis gestational age (OR 0.5, 95 % CI 0.32-0.77), Apgar score <5 at 5’ (OR 15.3, 1.35-173) and comorbidities (OR 4.62, 2.39-8.98) predicted unfavorable ultrasound at 5 weeks. At the multivariate analysis the accuracy in predicting unfavorable ultrasound, estimated by combined gestational age/Apgar/comorbidities ROC curve, was fair (AUC 74.6) and increased to excellent (AUC 89.4) when ultrasound at birth was included.

Conclusion

Gestational age and comorbitidies are the most important risk factors for detecting brain lesions. The combination of being born at 34 weeks and developing RDS represents the strongest indication to perform a cranial ultrasound. Differently from other studies, twin pregnancy doesn’t represent a risk factor.

【 授权许可】

   
2015 Fumagalli et al.

【 预 览 】
附件列表
Files Size Format View
20151116095916216.pdf 531KB PDF download
Fig. 2. 21KB Image download
Fig. 1. 9KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

【 参考文献 】
  • [1]Shapiro-Mendoza CK, Lackritz EM: Epidemiology of late and moderate preterm birth. Semin Fetal Neonatal Med 2012, 17(3):120-5.
  • [2]Wang ML, Dorer DJ, Fleming MP, Catlin EA: Clinical outcomes of near-term infants. Pediatrics 2004, 114(2):372-6.
  • [3]Kinney HC: The near-term (late preterm) human brain and risk for periventricular leukomalacia: a review. Semin Perinatol 2006, 30(2):81-8.
  • [4]Sannia A, Natalizia AR, Parodi A, Malova M, Fumagalli M, Rossi A, et al. Different gestational ages and changing vulnerability of the premature brain. J Matern Fetal Neonatal Med. 2013; doi:10.3109/14767058.2013.796166.
  • [5]Childs AM, Ramenghi LA, Evans DJ, Ridgeway J, Saysell M, Martinez D, et al.: MR features of developing periventricular white matter in preterm infants: evidence of glial cell migration. AJNR 1998, 19(5):971-6.
  • [6]Judaš M, Sedmak G, Kostović I: The significance of the subplate for evolution and developmental plasticity of the human brain. Front Hum Neurosci 2013, 2(7):423.
  • [7]Bassi L, Ricci D, Volzone A, Allsop JM, Srinivasan L, Pai A, et al.: Probabilistic diffusion tractography of the optic radiations and visual function in preterm infants at term equivalent age. Brain 2008, 31(Pt 2):573-82.
  • [8]Groppo M, Ricci D, Bassi L, Merchant N, Doria V, Arichi T, et al.: Development of the optic radiations and visual function after premature birth. Cortex 2014, 56:30-7.
  • [9]Benders MJ, Groenendaal F, De Vries LS: Preterm arterial ischemic stroke. Semin Fetal Neonatal Med 2009, 14(5):272-7.
  • [10]Logitharajah P, Rutherford MA, Cowan FM: Hypoxic-ischemic encephalopathy in preterm infants: antecedent factors, brain imaging, and outcome. Pediatr Res 2009, 66(2):222-9.
  • [11]Marlow N: Late preterm and early term children: the early years at school. Arch Dis Child Fetal Neonatal 2014, 99(6):F442.
  • [12]Liao MF, Chaou WT, Tsao LY, Nishida H, Sakanoue M: Ultrasound measurement of the ventricular size in newborn infants. Brain De 1986, 8(3):262-8.
  • [13]Sondhi V, Gupta G, Gupta PK, Patnaik SK, Tshering K: Establishment of nomograms and reference ranges for intra-cranial ventricular dimensions and ventriculo-hemispheric ratio in newborns by ultrasonography. Acta Paediatr 2008, 97(6):738-44.
  • [14]Papile LA, Burstein J, Burstein R, Koffler H: Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1.500 g. J Pediatr 1978, 92(4):529-34.
  • [15]Parodi A, Morana G, Severino MS, Malova M, Natalizia AR, Sannia A, et al. Low-grade intraventricular hemorrhage: is ultrasound good enough? J Matern Fetal Neonatal Med. 2013; doi:10.3109/14767058.2013.796162.
  • [16]Bolisetty S, Dhawan A, Abdel-Latif M, Bajuk B, Stack J, Lui K: New South Wales and Australian Capital Territory Neonatal Intensive Care Units’ Data Collection. Intraventricular hemorrhage and neurodevelopmental outcomes in extreme preterm infants. Pediatrics 2014, 133(1):55-62.
  • [17]Vasileiadis GT, Gelman N, Han VK, Williams LA, Mann R, Bureau Y, et al.: Uncomplicated intraventricular hemorrhage is followed by reduced cortical volume at near-term age. Pediatrics 2004, 114(3):e367-72.
  • [18]Supramaniam V, Vontell R, Srinivasan L, Wyatt-Ashmead J, Hagberg H, Rutherford M: Microglia activation in the extremely preterm human brain. Pediatr Res 2013, 73(3):301-9.
  • [19]De Vries LS, Eken P, Dubowitz LM. The spectrum of leukomalacia using cranial ultrasound. Behav Brain Res. 1992;31;49(1):1–6.
  • [20]Dammann O, Leviton A: Duration of transient hyperechoic images of white matter in very-low-birthweight infants: a proposed classification. Dev Med Child Neurol 1997, 39(1):2-5.
  • [21]Hamrick SE, Miller SP, Leonard C, Glidden DV, Goldstein R, Ramaswamy V, et al.: Trends in severe brain injury and neurodevelopmental outcome in premature newborn infants: the role of cystic periventricular leukomalacia. J Pediatr 2004, 145(5):593-9.
  • [22]Maalouf EF, Duggan PJ, Counsell SJ, Rutherford MA, Cowan F, Azzopardi D, Edwards AD: Comparison of findings on cranial ultrasound and magnetic resonance imaging in preterm infants. Pediatrics 2001, 107(4):719-27.
  • [23]Inder TE, Anderson NJ, Spencer C, Wells S, Volpe JJ: White matter injury in the premature infant: a comparison between serial cranial sonographic and MR findings at term. AJNR 2003, 24(5):805-9.
  • [24]Leijser LM, Liauw L, Veen S, de Boer IP, Walther FJ, van Wezel-Meijler G: Comparing brain white matter on sequential cranial ultrasound and MRI in very preterm infants. Neuroradiology 2008, 50(9):799-811.
  • [25]de Bruïne FT, van den Berg-Huysmans AA, Leijser LM, Rijken M, Steggerda SJ, van der Grond J, van Wezel-Meijler G: Clinical implications of MR imaging findings in the white matter in very preterm infants: a 2-year follow-up study. Radiology 2011, 261(3):899-906.
  • [26]Leitner Y, Weinstein M, Myers V, Uliel S, Geva K, Berger I, Marom R, Bashat DB, Ben-Sira L, Geva R, Gross-Tsur V: Diffuse excessive high signal intensity in low-risk preterm infants at term-equivalent age does not predict outcome at 1 year: a prospective study. Neuroradiology 2014, 56(8):669-78.
  • [27]Cornette LG, Tanner SF, Ramenghi LA, Miall LS, Childs AM, Arthur RJ, et al.: Magnetic resonance imaging of the infant brain: anatomical characteristics and clinical significance of punctate lesions. Arch Dis Child Fetal Neonatal Ed 2002, 86(3):F171-7.
  • [28]Perlman JM, Goodman S, Kreusser KL, Volpe JJ. Reduction in intraventricular hemorrhage by elimination of fluctuating cerebral blood-flow velocity in preterm infants with respiratory distress syndrome. N Engl J Med. 1985;23;312(21):1353–7.
  • [29]Wyatt JS, Edwards AD, Cope M, Delpy DT, McCormick DC, Potter A, et al.: Response of cerebral blood volume to changes in arterial carbon dioxide tension in preterm and term infants. Pediatr Res 1991, 29(6):553-7.
  • [30]Scher AI, Petterson B, Blair E, Ellenberg JH, Grether JK, Haan E, et al.: The risk of mortality or cerebral palsy in twins: a collaborative population-based study. Pediatr Res 2002, 52(5):671-81.
  文献评价指标  
  下载次数:13次 浏览次数:28次