期刊论文详细信息
Journal of Biomedical Science
Detection of vascular endothelial growth factor in colon cancer xenografts using bevacizumab based near infrared fluorophore conjugate
Keigo Endo2  Yoshito Tsushima1  Hideyuki Tominaga1  Dilip Shah3  Pramila Paudyal1  Bishnuhari Paudyal1 
[1] Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan;Kyoto College of Medical Science, Nantan, Kyoto 6220041, Japan;Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
关键词: Colorectal cancer;    Bevacizumab;    Optical Imaging;    VEGF;    Near infrared fluorescence;   
Others  :  817663
DOI  :  10.1186/1423-0127-21-35
 received in 2014-03-10, accepted in 2014-04-23,  发布年份 2014
PDF
【 摘 要 】

Background

The aim of this study was to develop the near infrared fluorescence (NIRF)-based imaging agent for the visualization of vascular endothelial growth factor (VEGF) in colon cancer. AlexaFluor 750 conjugating with bevacizumab, and injected intravenously into nude mice bearing VEGF over-expressing HT29 human colorectal cancer. Optical imaging was performed at 15 min, 24 h and 48 h post injection. Immunofluorescences staining of the tumor sections were performed. HT29 colorectal cancer xenografts were clearly visualized with bevacizumab-AlexaFluor 750.

Results

Ex vivo analysis showed 2.1 ± 0.4%, 37.6 ± 6.3% and 38.5 ± 6.2% injected dose/g accumulated in the tumors at 15 min, 24 h and 48 h respectively. Tumor uptake was significantly decreased in pretreated with excess of bevacizumab (p = 0.002). Immunofluorescence analysis showed strong staining of anti-CD 31 antibody around the blood vessels. Anti-VEGF-A and bevacizumab showed heterogeneous expression throughout the tumor.

Conclusions

Current study successfully detected the VEGF expression in HT29 colorectal cancer xenografts, signifying as a potential agent for non-invasive imaging of VEGF expression, which may be applied in clinical practice.

【 授权许可】

   
2014 Paudyal et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140711014115834.pdf 1048KB PDF download
Figure 5. 19KB Image download
Figure 4. 59KB Image download
Figure 3. 33KB Image download
Figure 2. 46KB Image download
Figure 1. 95KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Weissleder R, Mahmood U: Molecular imaging. Radiology 2001, 219:316-333.
  • [2]Herschman HR: Molecular imaging: looking at problems, seeing solutions. Science 2003, 302:605-608.
  • [3]Paudyal B, Zhang K, Chen CP, Wampole ME, Mehta N, Mitchell EP, Gray BD, Mattis JA, Pak KY, Thakur ML, Wickstrom E: Determining efficacy of breast cancer therapy by PET imaging of HER2 mRNA. Nucl Med Biol 2013, 40:994-999.
  • [4]Paudyal B, Oriuchi N, Paudyal P, Tsushima Y, Iida Y, Higuchi T, Hanaoka H, Miyakubo M, Takano A, Ishikita T, Endo K: Early diagnosis of recurrent hepatocellular carcinoma with 18 F-FDG PET after radiofrequency ablation therapy. Oncol Rep 2007, 18:1469-1473.
  • [5]Paudyal B, Paudyal P, Oriuchi N, Tsushima Y, Nakajima T, Endo K: Clinical implication of glucose transport and metabolism evaluated by 18 F-FDG PET in hepatocellular carcinoma. Int J Oncol 2008, 33:1047-1054.
  • [6]Paudyal P, Paudyal B, Hanaoka H, Oriuchi N, Iida Y, Yoshioka H, Tominaga H, Watanabe S, Ishioka NS, Endo K: Imaging and biodistribution of Her2/neu expression in non-small cell lung cancer xenografts with Cu-labeled trastuzumab PET. Cancer Sci 2010, 101:1045-1050.
  • [7]Hoffman RM: The multiple uses of fluorescent proteins to visualize cancer in vivo. Nat Rev Cancer 2005, 5:796-806.
  • [8]Ke S, Wen X, Gurfinkel M, Charnsangavej C, Wallace S, Sevick-Muraca EM, Li C: Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts. Cancer Res 2003, 63:7870-7875.
  • [9]Weissleder R, Ntziachristos V: Shedding light onto live molecular targets. Nat Med 2003, 9:123-128.
  • [10]Klohs J, Wunder A, Licha K: Near-infrared fluorescent probes for imaging vascular pathophysiology. Basic Res Cardiol 2008, 103:144-151.
  • [11]Paudyal P, Paudyal B, Iida Y, Oriuchi N, Hanaoka H, Tominaga H, Ishikita T, Yoshioka H, Higuchi T, Endo K: Dual functional molecular imaging probe targeting CD20 with PET and optical imaging. Oncol Rep 2009, 22:115-119.
  • [12]Mahmood U, Tung CH, Bogdanov A Jr, Weissleder R: Near-infrared optical imaging of protease activity for tumor detection. Radiology 1999, 213:866-870.
  • [13]Chang SK, Rizvi I, Solban N, Hasan T: In vivo optical molecular imaging of vascular endothelial growth factor for monitoring cancer treatment. Clin Cancer Res 2008, 14:4146-4153.
  • [14]Zhu Q, Tannenbaum S, Hegde P, Kane M, Xu C, Kurtzman SH: Noninvasive monitoring of breast cancer during neoadjuvant chemotherapy using optical tomography with ultrasound localization. Neoplasia 2008, 10:1028-1040.
  • [15]Zhang Y, Hong H, Engle JW, Yang Y, Barnhart TE, Cai W: Positron Emission Tomography and Near-Infrared Fluorescence Imaging of Vascular Endothelial Growth Factor with Dual-Labeled Bevacizumab. Am J Nucl Med Mol Imaging 2012, 2:1-13.
  • [16]Thakur ML, Zhang K, Paudyal B, Devakumar D, Covarrubias MY, Chen CP, Gray BD, Wickstrom E, Pak KY: Targeting apoptosis for optical imaging of infection. Mol Imaging Biol 2012, 14:163-171.
  • [17]Terwisscha van Scheltinga AG, van Dam GM, Nagengast WB, Ntziachristos V, Hollema H, Herek JL, Schroder CP, Kosterink JG, Lub-de Hoog MN, de Vries EG: Intraoperative near-infrared fluorescence tumor imaging with vascular endothelial growth factor and human epidermal growth factor receptor 2 targeting antibodies. J Nucl Med 2011, 52:1778-1785.
  • [18]Leevy WM, Lambert TN, Johnson JR, Morris J, Smith BD: Quantum dot probes for bacteria distinguish Escherichia coli mutants and permit in vivo imaging. Chem Commun (Camb) 2008, 20:2331-2333.
  • [19]Pierce MC, Javier DJ, Richards-Kortum R: Optical contrast agents and imaging systems for detection and diagnosis of cancer. Int J Cancer 2008, 123:1979-1990.
  • [20]Bremer C, Ntziachristos V, Weissleder R: Optical-based molecular imaging: contrast agents and potential medical applications. Eur Radiol 2003, 13:231-243.
  • [21]Withrow KP, Newman JR, Skipper JB, Gleysteen JP, Magnuson JS, Zinn K, Rosenthal EL: Assessment of bevacizumab conjugated to Cy5.5 for detection of head and neck cancer xenografts. Technol Cancer Res Treat 2008, 7:61-66.
  • [22]Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z: Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999, 13:9-22.
  • [23]Brown LF, Berse B, Jackman RW, Tognazzi K, Manseau EJ, Senger DR, Dvorak HF: Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in adenocarcinomas of the gastrointestinal tract. Cancer Res 1993, 53:4727-4735.
  • [24]Paudyal B, Paudyal P, Oriuchi N, Hanaoka H, Tominaga H, Endo K: Positron emission tomography imaging and biodistribution of vascular endothelial growth factor with 64Cu-labeled bevacizumab in colorectal cancer xenografts. Cancer Sci 2011, 102:117-121.
  • [25]Folkman J: Tumor angiogenesis: therapeutic implications. N Engl J Med 1971, 285:1182-1186.
  • [26]Ferrara N, Hillan KJ, Gerber HP, Novotny W: Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 2004, 3:391-400.
  • [27]Gasparini G, Longo R, Fanelli M, Teicher BA: Combination of antiangiogenic therapy with other anticancer therapies: results, challenges, and open questions. J Clin Oncol 2005, 23:1295-1311.
  • [28]Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E: Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004, 350:2335-2342.
  • [29]Vermeulen PB, Gasparini G, Fox SB, Toi M, Martin L, McCulloch P, Pezzella F, Viale G, Weidner N, Harris AL, Dirix LY: Quantification of angiogenesis in solid human tumours: an international consensus on the methodology and criteria of evaluation. Eur J Cancer 1996, 32A:2474-2484.
  • [30]Ferrara N, Gerber HP, LeCouter J: The biology of VEGF and its receptors. Nat Med 2003, 9:669-676.
  • [31]Stollman TH, Scheer MG, Leenders WP, Verrijp KC, Soede AC, Oyen WJ, Ruers TJ, Boerman OC: Specific imaging of VEGF-A expression with radiolabeled anti-VEGF monoclonal antibody. Int J Cancer 2008, 122:2310-2314.
  • [32]Nagengast WB, de Vries EG, Hospers GA, Mulder NH, de Jong JR, Hollema H, Brouwers AH, van Dongen GA, Perk LR, Lub-de Hooge MN: In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft. J Nucl Med 2007, 48:1313-1319.
  • [33]Abbas Rizvi SM, Song EY, Raja C, Beretov J, Morgenstern A, Apostolidis C, Russell PJ, Kearsley JH, Abbas K, Allen BJ: Preparation and testing of bevacizumab radioimmunoconjugates with Bismuth-213 and Bismuth-205/Bismuth-206. Cancer Biol Ther 2008, 7:1547-1554.
  • [34]Scheer MG, Stollman TH, Boerman OC, Verrijp K, Sweep FC, Leenders WP, Ruers TJ, Oyen WJ: Imaging liver metastases of colorectal cancer patients with radiolabelled bevacizumab: Lack of correlation with VEGF-A expression. Eur J Cancer 2008, 44:1835-1840.
  • [35]Jain RK: Transport of molecules, particles, and cells in solid tumors. Annu Rev Biomed Eng 1999, 1:241-263.
  • [36]Fujimori K, Covell DG, Fletcher JE, Weinstein JN: A modeling analysis of monoclonal antibody percolation through tumors: a binding-site barrier. J Nucl Med 1990, 31:1191-1198.
  • [37]Adams GP, Schier R, McCall AM, Simmons HH, Horak EM, Alpaugh RK, Marks JD, Weiner LM: High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res 2001, 61:4750-4755.
  文献评价指标  
  下载次数:66次 浏览次数:49次