期刊论文详细信息
Clinical Epigenetics
Recent developments on the role of epigenetics in obesity and metabolic disease
Peter L. Molloy2  Beverly S. Muhlhausler3  Janna L. Morrison1  Ross L. Tellam4  Susan J. van Dijk2 
[1] Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide 5001, SA, Australia;CSIRO Food and Nutrition Flagship, North Ryde 1670, NSW, Australia;Women’s and Children’s Health Research Institute, 72 King William Road, North Adelaide 5006, SA, Australia;CSIRO Agriculture Flagship, 306 Carmody Road, St Lucia 4067, QLD, Australia
关键词: Developmental programming;    Type 2 diabetes;    Obesity;    DNA methylation;    Epigenetics;   
Others  :  1220621
DOI  :  10.1186/s13148-015-0101-5
 received in 2015-03-09, accepted in 2015-06-29,  发布年份 2015
PDF
【 摘 要 】

The increased prevalence of obesity and related comorbidities is a major public health problem. While genetic factors undoubtedly play a role in determining individual susceptibility to weight gain and obesity, the identified genetic variants only explain part of the variation. This has led to growing interest in understanding the potential role of epigenetics as a mediator of gene-environment interactions underlying the development of obesity and its associated comorbidities. Initial evidence in support of a role of epigenetics in obesity and type 2 diabetes mellitus (T2DM) was mainly provided by animal studies, which reported epigenetic changes in key metabolically important tissues following high-fat feeding and epigenetic differences between lean and obese animals and by human studies which showed epigenetic changes in obesity and T2DM candidate genes in obese/diabetic individuals. More recently, advances in epigenetic methodologies and the reduced cost of epigenome-wide association studies (EWAS) have led to a rapid expansion of studies in human populations. These studies have also reported epigenetic differences between obese/T2DM adults and healthy controls and epigenetic changes in association with nutritional, weight loss, and exercise interventions. There is also increasing evidence from both human and animal studies that the relationship between perinatal nutritional exposures and later risk of obesity and T2DM may be mediated by epigenetic changes in the offspring. The aim of this review is to summarize the most recent developments in this rapidly moving field, with a particular focus on human EWAS and studies investigating the impact of nutritional and lifestyle factors (both pre- and postnatal) on the epigenome and their relationship to metabolic health outcomes. The difficulties in distinguishing consequence from causality in these studies and the critical role of animal models for testing causal relationships and providing insight into underlying mechanisms are also addressed. In summary, the area of epigenetics and metabolic health has seen rapid developments in a short space of time. While the outcomes to date are promising, studies are ongoing, and the next decade promises to be a time of productive research into the complex interactions between the genome, epigenome, and environment as they relate to metabolic disease.

【 授权许可】

   
2015 van Dijk et al.

【 预 览 】
附件列表
Files Size Format View
20150723032624768.pdf 963KB PDF download
Fig. 2. 38KB Image download
Fig. 1. 23KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

【 参考文献 】
  • [1]WHO. WHO Overweight and obesity. http://www.who.int/gho/ncd/risk_factors/overweight/en/index.html. Accessed 29 January 2015.
  • [2]Visscher PM, Brown MA, McCarthy MI, Yang J: Five years of GWAS discovery. Am J Hum Genet 2012, 90:7-24.
  • [3]Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, Powell C, Vedantam S, Buchkovich ML, Yang J, Croteau-Chonka DC, Esko T, Fall T, Ferreira T, Gustafsson S, Kutalik Z, Luan J, Mägi R, Randall JC, Winkler TW, Wood AR, Workalemahu T, Faul JD, Smith JA, Hua Zhao J, Zhao W, Chen J, Fehrmann R, Hedman ÅK, Karjalainen J, et al.: Genetic studies of body mass index yield new insights for obesity biology. Nature 2015, 518:197-206.
  • [4]Ling C, Del Guerra S, Lupi R, Rönn T, Granhall C, Luthman H, Masiello P, Marchetti P, Groop L, Del Prato S: Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia 2008, 51:615-622.
  • [5]Van Dijk SJ, Molloy PL, Varinli H, Morrison JL, Muhlhausler BS: Epigenetics and human obesity. Int J Obes (Lond) 2015, 39:85-97.
  • [6]Teh AL, Pan H, Chen L, Ong M-L, Dogra S, Wong J, MacIsaac JL, Mah SM, McEwen LM, Saw S-M, Godfrey KM, Chong Y-S, Kwek K, Kwoh C-K, Soh S-E, Chong MFF, Barton S, Karnani N, Cheong CY, Buschdorf JP, Stünkel W, Kobor MS, Meaney MJ, Gluckman PD, Holbrook JD: The effect of genotype and in utero environment on interindividual variation in neonate DNA methylomes. Genome Res 2014, 24:1064-1074.
  • [7]Olsson AH, Volkov P, Bacos K, Dayeh T, Hall E, Nilsson EA, Ladenvall C, Rönn T, Ling C: Genome-wide associations between genetic and epigenetic variation influence mRNA expression and insulin secretion in human pancreatic islets. PLoS Genet 2014, 10:e1004735.
  • [8]Grundberg E, Meduri E, Sandling JK, Hedman AK, Keildson S, Buil A, Busche S, Yuan W, Nisbet J, Sekowska M, Wilk A, Barrett A, Small KS, Ge B, Caron M, Shin S-Y, Lathrop M, Dermitzakis ET, McCarthy MI, Spector TD, Bell JT, Deloukas P: Global analysis of DNA methylation variation in adipose tissue from twins reveals links to disease-associated variants in distal regulatory elements. Am J Hum Genet 2013, 93:876-890.
  • [9]Ronn T, Volkov P, Gillberg L, Kokosar M, Perfilyev A, Jacobsen AL, Jorgensen SW, Brons C, Jansson P-A, Eriksson K-F, Pedersen O, Hansen T, Groop L, Stener-Victorin E, Vaag A, Nilsson E, Ling C: Impact of age, BMI and HbA1c levels on the genome-wide DNA methylation and mRNA expression patterns in human adipose tissue and identification of epigenetic biomarkers in blood. Hum Mol Genet 2015, 24:3792-3813.
  • [10]Waterland RA, Michels KB: Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr 2007, 27:363-388.
  • [11]McMillen IC, Rattanatray L, Duffield JA, Morrison JL, MacLaughlin SM, Gentili S, Muhlhausler BS: The early origins of later obesity: pathways and mechanisms. Adv Exp Med Biol 2009, 646:71-81.
  • [12]Ravelli A, van der Meulen J, Michels R, Osmond C, Barker D, Hales C, Bleker O: Glucose tolerance in adults after prenatal exposure to famine. Lancet 1998, 351:173-177.
  • [13]McMillen IC, MacLaughlin SM, Muhlhausler BS, Gentili S, Duffield JL, Morrison JL: Developmental origins of adult health and disease: the role of periconceptional and foetal nutrition. Basic Clin Pharmacol Toxicol 2008, 102:82-89.
  • [14]Zhang S, Rattanatray L, McMillen IC, Suter CM, Morrison JL: Periconceptional nutrition and the early programming of a life of obesity or adversity. Prog Biophys Mol Biol 2011, 106:307-314.
  • [15]Bouret S, Levin BE, Ozanne SE: Gene-environment interactions controlling energy and glucose homeostasis and the developmental origins of obesity. Physiol Rev 2015, 95:47-82.
  • [16]Borengasser SJ, Zhong Y, Kang P, Lindsey F, Ronis MJ, Badger TM, Gomez-Acevedo H, Shankar K: Maternal obesity enhances white adipose tissue differentiation and alters genome-scale DNA methylation in male rat offspring. Endocrinology 2013, 154:4113-4125.
  • [17]Gluckman PD, Lillycrop KA, Vickers MH, Pleasants AB, Phillips ES, Beedle AS, Burdge GC, Hanson MA: Metabolic plasticity during mammalian development is directionally dependent on early nutritional status. Proc Natl Acad Sci U S A 2007, 104:12796-12800.
  • [18]Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C, Rodford J, Slater-Jefferies JL, Garratt E, Crozier SR, Emerald BS, Gale CR, Inskip HM, Cooper C, Hanson MA: Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes 2011, 60:1528-1534.
  • [19]McMillen IC, Adam CL, Muhlhausler BS: Early origins of obesity: programming the appetite regulatory system. J Physiol 2005, 565(Pt 1):9-17.
  • [20]Begum G, Stevens A, Smith EB, Connor K, Challis JR, Bloomfield F, White A: Epigenetic changes in fetal hypothalamic energy regulating pathways are associated with maternal undernutrition and twinning. FASEB J 2012, 26:1694-1703.
  • [21]Ge ZJ, Liang QX, Hou Y, Han ZM, Schatten H, Sun QY, Zhang CL: Maternal obesity and diabetes may cause DNA methylation alteration in the spermatozoa of offspring in mice. Reprod Biol Endocrinol 2014, 12:29. BioMed Central Full Text
  • [22]Jousse C, Parry L, Lambert-Langlais S, Maurin AC, Averous J, Bruhat A, Carraro V, Tost J, Letteron P, Chen P, Jockers R, Launay JM, Mallet J, Fafournoux P: Perinatal undernutrition affects the methylation and expression of the leptin gene in adults: implication for the understanding of metabolic syndrome. FASEB J 2011, 25:3271-3278.
  • [23]Lan X, Cretney EC, Kropp J, Khateeb K, Berg MA, Penagaricano F, Magness R, Radunz AE, Khatib H: Maternal diet during pregnancy induces gene expression and DNA methylation changes in fetal tissues in sheep. Front Genet 2013, 4:49.
  • [24]Li CC, Young PE, Maloney CA, Eaton SA, Cowley MJ, Buckland ME, Preiss T, Henstridge DC, Cooney GJ, Febbraio MA, Martin DI, Cropley JE, Suter CM: Maternal obesity and diabetes induces latent metabolic defects and widespread epigenetic changes in isogenic mice. Epigenetics 2013, 8:602-611.
  • [25]Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC: Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 2005, 135:1382-1386.
  • [26]Radford EJ, Ito M, Shi H, Corish JA, Yamazawa K, Isganaitis E, Seisenberger S, Hore TA, Reik W, Erkek S, Peters AH, Patti ME, Ferguson-Smith AC: In utero effects. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 2014, 345(80):1255903.
  • [27]Suter M, Bocock P, Showalter L, Hu M, Shope C, McKnight R, Grove K, Lane R, Aagaard-Tillery K: Epigenomics: maternal high-fat diet exposure in utero disrupts peripheral circadian gene expression in nonhuman primates. FASEB J 2011, 25:714-726.
  • [28]Suter MA, Ma J, Vuguin PM, Hartil K, Fiallo A, Harris RA, Charron MJ, Aagaard KM: In utero exposure to a maternal high-fat diet alters the epigenetic histone code in a murine model. Am J Obs Gynecol 2014, 210:463 e1-463 e11.
  • [29]Tosh DN, Fu Q, Callaway CW, McKnight RA, McMillen IC, Ross MG, Lane RH, Desai M: Epigenetics of programmed obesity: alteration in IUGR rat hepatic IGF1 mRNA expression and histone structure in rapid vs. delayed postnatal catch-up growth. Am J Physiol Gastrointest Liver Physiol 2010, 299:G1023-G1029.
  • [30]Sandovici I, Smith NH, Nitert MD, Ackers-Johnson M, Uribe-Lewis S, Ito Y, Jones RH, Marquez VE, Cairns W, Tadayyon M, O’Neill LP, Murrell A, Ling C, Constancia M, Ozanne SE: Maternal diet and aging alter the epigenetic control of a promoter-enhancer interaction at the Hnf4a gene in rat pancreatic islets. Proc Natl Acad Sci U S A 2011, 108:5449-5454.
  • [31]Braunschweig M, Jagannathan V, Gutzwiller A, Bee G: Investigations on transgenerational epigenetic response down the male line in F2 pigs. PLoS One 2012., 7Article ID e30583
  • [32]Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R, Bock C, Li C, Gu H, Zamore PD, Meissner A, Weng Z, Hofmann HA, Friedman N, Rando OJ: Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 2010, 143:1084-1096.
  • [33]Ost A, Lempradl A, Casas E, Weigert M, Tiko T, Deniz M, Pantano L, Boenisch U, Itskov PM, Stoeckius M, Ruf M, Rajewsky N, Reuter G, Iovino N, Ribeiro C, Alenius M, Heyne S, Vavouri T, Pospisilik JA: Paternal diet defines offspring chromatin state and intergenerational obesity. Cell 2014, 159:1352-1364.
  • [34]Martínez D, Pentinat T, Ribó S, Daviaud C, Bloks VW, Cebrià J, Villalmanzo N, Kalko SG, Ramón-Krauel M, Díaz R, Plösch T, Tost J, Jiménez-Chillarón JC: In utero undernutrition in male mice programs liver lipid metabolism in the second-generation offspring involving altered Lxra DNA methylation. Cell Metab 2014, 19:941-951.
  • [35]Wei Y, Yang C-R, Wei Y-P, Zhao Z-A, Hou Y, Schatten H, Sun Q-Y: Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc Natl Acad Sci U S A 2014, 111:1873-1878.
  • [36]Grossniklaus U, Kelly WG, Kelly B, Ferguson-Smith AC, Pembrey M, Lindquist S: Transgenerational epigenetic inheritance: how important is it? Nat Rev Genet 2013, 14:228-235.
  • [37]Pembrey M, Saffery R, Bygren LO: Human transgenerational responses to early-life experience: potential impact on development, health and biomedical research. J Med Genet 2014, 51:563-572.
  • [38]Wolff GL, Kodell RL, Moore SR, Cooney CA: Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J 1998, 12:949-957.
  • [39]Jirtle RL, Skinner MK: Environmental epigenomics and disease susceptibility. Nat Rev Genet 2007, 8:253-262.
  • [40]Morgan HD, Sutherland HG, Martin DI, Whitelaw E: Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 1999, 23:314-318.
  • [41]Cropley JE, Suter CM, Beckman KB, Martin DI: Germ-line epigenetic modification of the murine A vy allele by nutritional supplementation. Proc Natl Acad Sci U S A 2006, 103:17308-17312.
  • [42]Hoile SP, Lillycrop KA, Thomas NA, Hanson MA, Burdge GC: Dietary protein restriction during F0 pregnancy in rats induces transgenerational changes in the hepatic transcriptome in female offspring. PLoS One 2011., 6Article ID e21668
  • [43]Multhaup ML, Seldin MM, Jaffe AE, Lei X, Kirchner H, Mondal P, Li Y, Rodriguez V, Drong A, Hussain M, Lindgren C, McCarthy M, Näslund E, Zierath JR, Wong GW, Feinberg AP: Mouse-human experimental epigenetic analysis unmasks dietary targets and genetic liability for diabetic phenotypes. Cell Metab 2015, 21:138-149.
  • [44]Michels KB, Binder AM, Dedeurwaerder S, Epstein CB, Greally JM, Gut I, Houseman EA, Izzi B, Kelsey KT, Meissner A, Milosavljevic A, Siegmund KD, Bock C, Irizarry RA: Recommendations for the design and analysis of epigenome-wide association studies. Nat Methods 2013, 10:949-955.
  • [45]Dayeh TA, Olsson AH, Volkov P, Almgren P, Rönn T, Ling C: Identification of CpG-SNPs associated with type 2 diabetes and differential DNA methylation in human pancreatic islets. Diabetologia 2013, 56:1036-1046.
  • [46]Relton CL, Davey Smith G: Two-step epigenetic Mendelian randomization: a strategy for establishing the causal role of epigenetic processes in pathways to disease. Int J Epidemiol 2012, 41:161-176.
  • [47]Liu Y, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson A, Reinius L, Acevedo N, Taub M, Ronninger M, Shchetynsky K, Scheynius A, Kere J, Alfredsson L, Klareskog L, Ekström TJ, Feinberg AP: Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol 2013, 31:142-147.
  • [48]Yuan W, Xia Y, Bell CG, Yet I, Ferreira T, Ward KJ, Gao F, Loomis AK, Hyde CL, Wu H, Lu H, Liu Y, Small KS, Viñuela A, Morris AP, Berdasco M, Esteller M, Brosnan MJ, Deloukas P, McCarthy MI, John SL, Bell JT, Wang J, Spector TD: An integrated epigenomic analysis for type 2 diabetes susceptibility loci in monozygotic twins. Nat Commun 2014, 5:5719.
  • [49]Nitert MD, Dayeh T, Volkov P, Elgzyri T, Hall E, Nilsson E, Yang BT, Lang S, Parikh H, Wessman Y, Weishaupt H, Attema J, Abels M, Wierup N, Almgren P, Jansson P-A, Rönn T, Hansson O, Eriksson K-F, Groop L, Ling C: Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes. Diabetes 2012, 61:3322-3332.
  • [50]Gagnon F, Aïssi D, Carrié A, Morange P-E, Trégouët D-A: Robust validation of methylation levels association at CPT1A locus with lipid plasma levels. J Lipid Res 2014, 55:1189-1191.
  • [51]Demerath EW, Guan W, Grove ML, Aslibekyan S, Mendelson M, Zhou Y-H, et al. Epigenome-wide association atudy (EWAS) of BMI, BMI change, and waist circumference in African American adults identifies multiple replicated loci. Hum Mol Genet. 2015:ddv161–.
  • [52]Dick KJ, Nelson CP, Tsaprouni L, Sandling JK, Aïssi D, Wahl S, Meduri E, Morange P-E, Gagnon F, Grallert H, Waldenberger M, Peters A, Erdmann J, Hengstenberg C, Cambien F, Goodall AH, Ouwehand WH, Schunkert H, Thompson JR, Spector TD, Gieger C, Trégouët D-A, Deloukas P, Samani NJ: DNA methylation and body-mass index: a genome-wide analysis. Lancet 2014, 6736:1-9.
  • [53]Su S, Zhu H, Xu X, Wang X, Dong Y, Kapuku G, Treiber F, Gutin B, Harshfield G, Snieder H, Wang X: DNA methylation of the LY86 gene is associated with obesity, insulin resistance, and inflammation. Twin Res Hum Genet 2014, 17:183-191.
  • [54]Clarke-Harris R, Wilkin TJ, Hosking J, Pinkney J, Jeffery AN, Metcalf BS, Godfrey KM, Voss LD, Lillycrop KA, Burdge GC: PGC1α promoter methylation in blood at 5–7 years predicts adiposity from 9 to 14 years (EarlyBird 50). Diabetes 2014, 63:2528-2537.
  • [55]Guay S-P, Brisson D, Lamarche B, Biron S, Lescelleur O, Biertho L, Marceau S, Vohl M-C, Gaudet D, Bouchard L: ADRB3 gene promoter DNA methylation in blood and visceral adipose tissue is associated with metabolic disturbances in men. Epigenomics 2014, 6:33-43.
  • [56]Agha G, Houseman EA, Kelsey KT, Eaton CB, Buka SL, Loucks EB. Adiposity is associated with DNA methylation profile in adipose tissue. Int J Epidemiol. 2014:1–11.
  • [57]Irvin MR, Zhi D, Joehanes R, Mendelson M, Aslibekyan S, Claas SA, Thibeault KS, Patel N, Day K, Jones LW, Liang L, Chen BH, Yao C, Tiwari HK, Ordovas JM, Levy D, Absher D, Arnett DK: Epigenome-wide association study of fasting blood lipids in the genetics of lipid-lowering drugs and diet network study. Circulation 2014, 130:565-572.
  • [58]Frazier-Wood AC, Aslibekyan S, Absher DM, Hopkins PN, Sha J, Tsai MY, Tiwari HK, Waite LL, Zhi D, Arnett DK: Methylation at CPT1A locus is associated with lipoprotein subfraction profiles. J Lipid Res 2014, 55:1324-1330.
  • [59]Pfeifferm L, Wahl S, Pilling LC, Reischl E, Sandling JK, Kunze S, et al. DNA methylation of lipid-related genes affects blood lipid levels. Circ Cardiovasc Genet. 2015.
  • [60]Petersen A-K, Zeilinger S, Kastenmüller G, Römisch-Margl W, Brugger M, Peters A, Meisinger C, Strauch K, Hengstenberg C, Pagel P, Huber F, Mohney RP, Grallert H, Illig T, Adamski J, Waldenberger M, Gieger C, Suhre K: Epigenetics meets metabolomics: an epigenome-wide association study with blood serum metabolic traits. Hum Mol Genet 2014, 23:534-545.
  • [61]Hidalgo B, Irvin MR, Sha J, Zhi D, Aslibekyan S, Absher D, Tiwari HK, Kabagambe EK, Ordovas JM, Arnett DK: Epigenome-wide association study of fasting measures of glucose, insulin, and HOMA-IR in the genetics of lipid lowering drugs and diet network study. Diabetes 2014, 63:801-807.
  • [62]Dayeh T, Volkov P, Salö S, Hall E, Nilsson E, Olsson AH, Kirkpatrick CL, Wollheim CB, Eliasson L, Rönn T, Bacos K, Ling C: Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genet 2014., 10Article ID e1004160
  • [63]Nilsson E, Jansson PA, Perfilyev A, Volkov P, Pedersen M, Svensson MK, Poulsen P, Ribel-Madsen R, Pedersen NL, Almgren P, Fadista J, Rönn T, Klarlund Pedersen B, Scheele C, Vaag A, Ling C: Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes 2014, 63:2962-2976.
  • [64]Benton MC, Johnstone A, Eccles D, Harmon B, Hayes MT, Lea RA, Griffiths L, Hoffman EP, Stubbs RS, Macartney-coxson D: An analysis of DNA methylation in human adipose tissue reveals differential modification of obesity genes before and after gastric bypass and weight loss. Gene 2015, 16:1-21.
  • [65]Bateson P, Gluckman P: Plasticity and robustness in development and evolution. Int J Epidemiol 2012, 41:219-223.
  • [66]Feinberg AP, Irizarry RA, Feinberg AP, Irizarry RA: Evolution in health and medicine Sackler colloquium: stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proc Natl Acad Sci U S A 2010, 107(Suppl):1757-1764.
  • [67]Martino D, Loke YJ, Gordon L, Ollikainen M, Cruickshank MN, Saffery R, Craig JM: Longitudinal, genome-scale analysis of DNA methylation in twins from birth to 18 months of age reveals rapid epigenetic change in early life and pair-specific effects of discordance. Genome Biol 2013, 14:R42. BioMed Central Full Text
  • [68]Tobi EW, Goeman JJ, Monajemi R, Gu H, Putter H, Zhang Y, Slieker RC, Stok AP, Thijssen PE, Müller F, van Zwet EW, Bock C, Meissner A, Lumey LH, Eline Slagboom P, Heijmans BT: DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat Commun 2014, 5:5592.
  • [69]Dominguez-Salas P, Moore SE, Baker MS, Bergen AW, Cox SE, Dyer RA, Fulford AJ, Guan Y, Laritsky E, Silver MJ, Swan GE, Zeisel SH, Innis SM, Waterland RA, Prentice AM, Hennig BJ: Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat Commun 2014, 5:3746.
  • [70]Quilter CR, Cooper WN, Cliffe KM, Skinner BM, Prentice PM, Nelson L, et al. Impact on offspring methylation patterns of maternal gestational diabetes mellitus and intrauterine growth restraint suggest common genes and pathways linked to subsequent type 2 diabetes risk. FASEB J. 2014:1–12.
  • [71]Morales E, Groom A, Lawlor DA, Relton CL: DNA methylation signatures in cord blood associated with maternal gestational weight gain: results from the ALSPAC cohort. BMC Res Notes 2014, 7:278. BioMed Central Full Text
  • [72]Ruchat SM, Houde AA, Voisin G, St-Pierre J, Perron P, Baillargeon JP, Gaudet D, Hivert MF, Brisson D, Bouchard L: Gestational diabetes mellitus epigenetically affects genes predominantly involved in metabolic diseases. Epigenetics 2013, 8:935-943.
  • [73]Liu X, Chen Q, Tsai H-J, Wang G, Hong X, Zhou Y, Zhang C, Liu C, Liu R, Wang H, Zhang S, Yu Y, Mestan KK, Pearson C, Otlans P, Zuckerman B, Wang X: Maternal preconception body mass index and offspring cord blood DNA methylation: exploration of early life origins of disease. Environ Mol Mutagen 2014, 55:223-230.
  • [74]Soubry A, Murphy SK, Wang F, Huang Z, Vidal AC, Fuemmeler BF, Kurtzberg J, Murtha A, Jirtle RL, Schildkraut JM, Hoyo C: Newborns of obese parents have altered DNA methylation patterns at imprinted genes. Int J Obes (Lond) 2015, 39:650-657.
  • [75]Jacobsen SC, Brøns C, Bork-Jensen J, Ribel-Madsen R, Yang B, Lara E, Hall E, Calvanese V, Nilsson E, Jørgensen SW, Mandrup S, Ling C, Fernandez AF, Fraga MF, Poulsen P, Vaag A: Effects of short-term high-fat overfeeding on genome-wide DNA methylation in the skeletal muscle of healthy young men. Diabetologia 2012, 55:3341-3349.
  • [76]Gillberg L, Jacobsen SC, Rönn T, Brøns C, Vaag A: PPARGC1A DNA methylation in subcutaneous adipose tissue in low birth weight subjects--impact of 5 days of high-fat overfeeding. Metabolism 2014, 63:263-271.
  • [77]Huang Y-T, Maccani JZJ, Hawley NL, Wing RR, Kelsey KT, McCaffery JM: Epigenetic patterns in successful weight loss maintainers: a pilot study. Int J Obes (Lond) 2015, 39:865-868.
  • [78]Barres R, Kirchner H, Rasmussen M, Yan J, Kantor FR, Krook A, Näslund E, Zierath JR. Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. Cell Rep. 2013:1–8.
  • [79]Ahrens M, Ammerpohl O, von Schönfels W, Kolarova J, Bens S, Itzel T, Teufel A, Herrmann A, Brosch M, Hinrichsen H, Erhart W, Egberts J, Sipos B, Schreiber S, Häsler R, Stickel F, Becker T, Krawczak M, Röcken C, Siebert R, Schafmayer C, Hampe J: DNA methylation analysis in nonalcoholic fatty liver disease suggests distinct disease-specific and remodeling signatures after bariatric surgery. Cell Metab 2013, 18:296-302.
  • [80]Voisin S, Eynon N, Yan X, Bishop DJ: Exercise training and DNA methylation in humans. Acta Physiol (Oxf) 2014, 213:39-59.
  • [81]Lindholm ME, Marabita F, Gomez-Cabrero D, Rundqvist H, Ekström TJ, Tegnér J, Sundberg CJ: An integrative analysis reveals coordinated reprogramming of the epigenome and the transcriptome in human skeletal muscle after training. Epigenetics 2014, 9:1557-1569.
  • [82]Denham J, O’Brien BJ, Marques FZ, Charchar FJ. Changes in the leukocyte methylome and its effect on cardiovascular related genes after exercise. J Appl Physiol. 2014:jap.00878.2014.
  • [83]Rowlands DS, Page RA, Sukala WR, Giri M, Ghimbovschi SD, Hayat I, Cheema BS, Lys I, Leikis M, Sheard PW, Wakefield SJ, Breier B, Hathout Y, Brown K, Marathi R, Orkunoglu-Suer FE, Devaney JM, Leiken B, Many G, Krebs J, Hopkins WG, Hoffman EP: Multi-omic integrated networks connect DNA methylation and miRNA with skeletal muscle plasticity to chronic exercise in type 2 diabetic obesity. Physiol Genomics 2014, 46:747-765.
  • [84]Horvath S, Erhart W, Brosch M, Ammerpohl O, von Schonfels W, Ahrens M, Heits N, Bell JT, Tsai P-C, Spector TD, Deloukas P, Siebert R, Sipos B, Becker T, Rocken C, Schafmayer C, Hampe J: Obesity accelerates epigenetic aging of human liver. Proc Natl Acad Sci 2014, 111:15538-15543.
  • [85]Almén MS, Nilsson EK, Jacobsson JA, Kalnina I, Klovins J, Fredriksson R, et al. Genome-wide analysis reveals DNA methylation markers that vary with both age and obesity. Gene. 2014.;548:61–7
  • [86]Houseman EA, Molitor J, Marsit CJ: Reference-free cell mixture adjustments in analysis of DNA methylation data. Bioinformatics 2014, 30:1431-1439.
  • [87]Wells JC: A critical appraisal of the predictive adaptive response hypothesis. Int J Epidemiol 2012, 41:229-235.
  • [88]Williams-Wyss O, Zhang S, MacLaughlin SM, Kleemann D, Walker SK, Suter CM, Cropley JE, Morrison JL, Roberts CT, McMillen IC: Embryo number and periconceptional undernutrition in the sheep have differential effects on adrenal epigenotype, growth, and development. Am J Physiol Endocrinol Metab 2014, 307:E141-E150.
  • [89]Zhang S, Rattanatray L, Morrison JL, Nicholas LM, Lie S, McMillen IC: Maternal obesity and the early origins of childhood obesity: weighing up the benefits and costs of maternal weight loss in the periconceptional period for the offspring. Exp Diabetes Res 2011, 2011:585749.
  • [90]Zhang S, Williams-Wyss O, MacLaughlin SM, Walker SK, Kleemann DO, Suter CM, Morrison JL, Molloy L, Cropley JE, Roberts CT, McMillen IC: Maternal undernutrition during the first week after conception results in decreased expression of glucocorticoid receptor mRNA in the absence of GR exon 17 hypermethylation in the fetal pituitary in late gestation. J Dev Orig Heal Dis 2013, 4:391-401.
  • [91]Lie S, Morrison JL, Williams-Wyss O, Suter CM, Humphreys DT, Ozanne SE, Zhang S, Maclaughlin SM, Kleemann DO, Walker SK, Roberts CT, McMillen IC: Periconceptional undernutrition programs changes in insulin-signaling molecules and microRNAs in skeletal muscle in singleton and twin fetal sheep. Biol Reprod 2014, 90:5.
  • [92]Van Straten EM, van Meer H, Huijkman NC, van Dijk TH, Baller JF, Verkade HJ, Kuipers F, Plosch T: Fetal liver X receptor activation acutely induces lipogenesis but does not affect plasma lipid response to a high-fat diet in adult mice. Am J Physiol Endocrinol Metab 2009, 297:E1171-E1178.
  • [93]Fernandez-Twinn DS, Alfaradhi MZ, Martin-Gronert MS, Duque-Guimaraes DE, Piekarz A, Ferland-McCollough D, Bushell M, Ozanne SE: Downregulation of IRS-1 in adipose tissue of offspring of obese mice is programmed cell-autonomously through post-transcriptional mechanisms. Mol Metab 2014, 3:325-333.
  • [94]Waterland RA, Travisano M, Tahiliani KG: Diet-induced hypermethylation at agouti viable yellow is not inherited transgenerationally through the female. FASEB J 2007, 21:3380-3385.
  • [95]Ge ZJ, Luo SM, Lin F, Liang QX, Huang L, Wei YC, Hou Y, Han ZM, Schatten H, Sun QY: DNA methylation in oocytes and liver of female mice and their offspring: effects of high-fat-diet-induced obesity. Env Heal Perspect 2014, 122:159-164.
  • [96]Ollikainen M, Ismail K, Gervin K, Kyllönen A, Hakkarainen A, Lundbom J, Järvinen EA, Harris JR, Lundbom N, Rissanen A, Lyle R, Pietiläinen KH, Kaprio J: Genome-wide blood DNA methylation alterations at regulatory elements and heterochromatic regions in monozygotic twins discordant for obesity and liver fat. Clin Epigenetics 2015, 7:1-13. BioMed Central Full Text
  文献评价指标  
  下载次数:20次 浏览次数:16次