期刊论文详细信息
Journal of Neuroinflammation
Interleukin-36γ is expressed by neutrophils and can activate microglia, but has no role in experimental autoimmune encephalomyelitis
Luc Vallières2  Alexandre Patenaude1  Aline Dumas1  Lusine Bozoyan1 
[1] Axis of Neuroscience, University Hospital Center of Quebec, 2705 Laurier Boulevard, room T2-50, Quebec G1V 4G2, QC, Canada;Department of Molecular Medicine, Laval University, Quebec, Canada
关键词: Multiple sclerosis;    Autoimmunity;    Neuroinflammation;    Microglial cells;    Granulocytes;    IL-1Rrp2;    IL-1Rl2;    F9;    IL-1 ;    IL-36 gamma;   
Others  :  1227052
DOI  :  10.1186/s12974-015-0392-7
 received in 2015-07-24, accepted in 2015-09-03,  发布年份 2015
PDF
【 摘 要 】

Background

Experimental autoimmune encephalomyelitis (EAE) is a model of inflammatory demyelinating diseases mediated by different types of leukocytes. How these cells communicate with each other to orchestrate autoimmune attacks is not fully understood, especially in the case of neutrophils, whose importance in EAE is newly established. The present study aimed to determine the expression pattern and role of different components of the IL-36 signaling pathway (IL-36α, IL-36β, IL-36γ, IL-36R) in EAE.

Methods

EAE was induced by either active immunization with myelin peptide, passive transfer of myelin-reactive T cells or injection of pertussis toxin to transgenic 2D2 mice. The molecules of interest were analyzed using a combination of techniques, including quantitative real-time PCR (qRT-PCR), flow cytometry, Western blotting, in situ hybridization, and immunohistochemistry. Microglial cultures were treated with recombinant IL-36γ and analyzed using DNA microarrays. Different mouse strains were subjected to clinical evaluation and flow cytometric analysis in order to compare their susceptibility to EAE.

Results

Our observations indicate that both IL-36γ and IL-36R are strongly upregulated in nervous and hematopoietic tissues in different forms of EAE. IL-36γ is specifically expressed by neutrophils, while IL-36R is expressed by different immune cells, including microglia and other myeloid cells. In culture, microglia respond to recombinant IL-36γ by expressing molecules involved in neutrophil recruitment, such as Csf3, IL-1β, and Cxcl2. However, mice deficient in either IL-36γ or IL-36R develop similar clinical and histopathological signs of EAE compared to wild-type controls.

Conclusion

This study identifies IL-36γ as a neutrophil-related cytokine that can potentially activate microglia, but that is only correlative and not contributory in EAE.

【 授权许可】

   
2015 Bozoyan et al.

【 预 览 】
附件列表
Files Size Format View
20150927090610562.pdf 2550KB PDF download
Fig. 5. 66KB Image download
Fig. 4. 26KB Image download
Fig. 3. 44KB Image download
Fig. 2. 117KB Image download
Fig. 1. 37KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Goverman J: Autoimmune T cell responses in the central nervous system. Nat Rev Immunol. 2009, 9:393-407.
  • [2]King IL, Dickendesher TL, Segal BM: Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. Blood. 2009, 113:3190-7.
  • [3]Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Capello E, Mancardi GL, et al.: Dendritic cells in multiple sclerosis lesions: maturation stage, myelin uptake, and interaction with proliferating T cells. J Neuropathol Exp Neurol. 2006, 65:124-41.
  • [4]Fischer HG, Reichmann G: Brain dendritic cells and macrophages/microglia in central nervous system inflammation. J Immunol. 2001, 166:2717-26.
  • [5]Serafini B, Columba-Cabezas S, Di Rosa F, Aloisi F: Intracerebral recruitment and maturation of dendritic cells in the onset and progression of experimental autoimmune encephalomyelitis. Am J Pathol. 2000, 157:1991-2002.
  • [6]McMahon EJ, Bailey SL, Castenada CV, Waldner H, Miller SD: Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat Med. 2005, 11:335-9.
  • [7]Greter M, Heppner FL, Lemos MP, Odermatt BM, Goebels N, Laufer T, et al.: Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med. 2005, 11:328-34.
  • [8]Deshpande P, King IL, Segal BM: Cutting edge: CNS CD11c + cells from mice with encephalomyelitis polarize Th17 cells and support CD25 + CD4+ T cell-mediated immunosuppression, suggesting dual roles in the disease process. J Immunol. 2007, 178:6695-9.
  • [9]Bailey SL, Schreiner B, McMahon EJ, Miller SD: CNS myeloid DCs presenting endogenous myelin peptides ‘preferentially’ polarize CD4+ T(H)-17 cells in relapsing EAE. Nat Immunol. 2007, 8:172-80.
  • [10]Kivisakk P, Imitola J, Rasmussen S, Elyaman W, Zhu B, Ransohoff RM, et al.: Localizing central nervous system immune surveillance: meningeal antigen-presenting cells activate T cells during experimental autoimmune encephalomyelitis. Ann Neurol. 2009, 65:457-69.
  • [11]Bartholomaus I, Kawakami N, Odoardi F, Schlager C, Miljkovic D, Ellwart JW, et al.: Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature. 2009, 462:94-8.
  • [12]Wlodarczyk A, Lobner M, Cedile O, Owens T: Comparison of microglia and infiltrating CD11c(+) cells as antigen presenting cells for T cell proliferation and cytokine response. J Neuroinflammation. 2014, 11:57. BioMed Central Full Text
  • [13]Tran EH, Hoekstra K, van Rooijen N, Dijkstra CD, Owens T: Immune invasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage-depleted mice. J Immunol. 1998, 161:3767-75.
  • [14]Heppner FL, Greter M, Marino D, Falsig J, Raivich G, Hovelmeyer N, et al.: Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med. 2005, 11:146-52.
  • [15]Yamasaki R, Lu H, Butovsky O, Ohno N, Rietsch AM, Cialic R, et al.: Differential roles of microglia and monocytes in the inflamed central nervous system. J Exp Med. 2014, 211:1533-49.
  • [16]Carlson T, Kroenke M, Rao P, Lane TE, Segal B: The Th17-ELR+ CXC chemokine pathway is essential for the development of central nervous system autoimmune disease. J Exp Med. 2008, 205:811-23.
  • [17]Liu L, Darnall L, Hu T, Choi K, Lane TE, Ransohoff RM: Myelin repair is accelerated by inactivating CXCR2 on nonhematopoietic cells. J Neurosci. 2010, 30:9074-83.
  • [18]Roy M, Richard JF, Dumas A, Vallieres L: CXCL1 can be regulated by IL-6 and promotes granulocyte adhesion to brain capillaries during bacterial toxin exposure and encephalomyelitis. J Neuroinflammation. 2012, 9:18. BioMed Central Full Text
  • [19]Aube B, Levesque SA, Pare A, Chamma E, Kebir H, Gorina R, et al.: Neutrophils mediate blood-spinal cord barrier disruption in demyelinating neuroinflammatory diseases. J Immunol. 2014, 193:2438-54.
  • [20]Codarri L, Gyülvészi G, Tosevski V, Hesske L, Fontana A, Magnenat L, et al.: RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol. 2011, 12:560-7.
  • [21]El-Behi M, Ciric B, Dai H, Yan Y, Cullimore M, Safavi F, et al.: The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat Immunol. 2011, 12:568-75.
  • [22]Kroenke MA, Carlson TJ, Andjelkovic AV, Segal BM: IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J Exp Med. 2008, 205:1535-41.
  • [23]Dinarello CA: Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011, 117:3720-32.
  • [24]Dumas A, Amiable N, de Rivero Vaccari JP, Chae JJ, Keane RW, Lacroix S, et al.: The inflammasome pyrin contributes to pertussis toxin-induced IL-1beta synthesis, neutrophil intravascular crawling and autoimmune encephalomyelitis. PLoS Pathog. 2014., 10Article ID e1004150
  • [25]Garlanda C, Dinarello CA, Mantovani A: The interleukin-1 family: back to the future. Immunity. 2013, 39:1003-18.
  • [26]Gunther S, Sundberg EJ. Molecular determinants of agonist and antagonist signaling through the IL-36 receptor. J Immunol. 2014;193:921–30
  • [27]Towne JE, Renshaw BR, Douangpanya J, Lipsky BP, Shen M, Gabel CA, et al.: Interleukin-36 (IL-36) ligands require processing for full agonist (IL-36alpha, IL-36beta, and IL-36gamma) or antagonist (IL-36Ra) activity. J Biol Chem. 2011, 286:42594-602.
  • [28]Lovenberg TW, Crowe PD, Liu C, Chalmers DT, Liu XJ, Liaw C, et al.: Cloning of a cDNA encoding a novel interleukin-1 receptor related protein (IL 1R-rp2). J Neuroimmunol. 1996, 70:113-22.
  • [29]Debets R, Timans JC, Homey B, Zurawski S, Sana TR, Lo S, et al.: Two novel IL-1 family members, IL-1 delta and IL-1 epsilon, function as an antagonist and agonist of NF-kappa B activation through the orphan IL-1 receptor-related protein 2. J Immunol. 2001, 167:1440-6.
  • [30]Vos JB, van Sterkenburg MA, Rabe KF, Schalkwijk J, Hiemstra PS, Datson NA: Transcriptional response of bronchial epithelial cells to Pseudomonas aeruginosa: identification of early mediators of host defense. Physiol Genomics. 2005, 21:324-36.
  • [31]Chustz RT, Nagarkar DR, Poposki JA, Favoreto SJ, Avila PC, Schleimer RP, et al.: Regulation and function of the IL-1 family cytokine IL-1F9 in human bronchial epithelial cells. Am J Respir Cell Mol Biol. 2011, 45:145-53.
  • [32]Johnston A, Xing X, Guzman AM, Riblett M, Loyd CM, Ward NL, et al.: IL-1F5, -F6, -F8, and -F9: a novel IL-1 family signaling system that is active in psoriasis and promotes keratinocyte antimicrobial peptide expression. J Immunol. 2011, 186:2613-22.
  • [33]Muhr P, Zeitvogel J, Heitland I, Werfel T, Wittmann M: Expression of interleukin (IL)-1 family members upon stimulation with IL-17 differs in keratinocytes derived from patients with psoriasis and healthy donors. Br J Dermatol. 2011, 165:189-93.
  • [34]Carrier Y, Ma HL, Ramon HE, Napierata L, Small C, O’Toole M, et al.: Inter-regulation of Th17 cytokines and the IL-36 cytokines in vitro and in vivo: implications in psoriasis pathogenesis. J Invest Dermatol. 2011, 131:2428-37.
  • [35]Lian LH, Milora KA, Manupipatpong KK, Jensen LE: The double-stranded RNA analogue polyinosinic-polycytidylic acid induces keratinocyte pyroptosis and release of IL-36γ. J Invest Dermatol. 2012, 132:1346-53.
  • [36]Bachmann M, Scheiermann P, Hardle L, Pfeilschifter J, Muhl H: IL-36gamma/IL-1F9, an innate T-bet target in myeloid cells. J Biol Chem. 2012, 287:41684-96.
  • [37]Gresnigt MS, Rosler B, Jacobs CW, Becker KL, Joosten LA, van der Meer JW, et al.: The IL-36 receptor pathway regulates Aspergillus fumigatus-induced Th1 and Th17 responses. Eur J Immunol. 2013, 43:416-26.
  • [38]Vigne S, Palmer G, Lamacchia C, Martin P, Talabot-Ayer D, Rodriguez E, et al.: IL-36R ligands are potent regulators of dendritic and T cells. Blood. 2011, 118:5813-23.
  • [39]Mutamba S, Allison A, Mahida Y, Barrow P, Foster N: Expression of IL-1Rrp2 by human myelomonocytic cells is unique to DCs and facilitates DC maturation by IL-1F8 and IL-1F9. Eur J Immunol. 2012, 42:607-17.
  • [40]Foster AM, Baliwag J, Chen CS, Guzman AM, Stoll SW, Gudjonsson JE, et al.: IL-36 promotes myeloid cell infiltration, activation, and inflammatory activity in skin. J Immunol. 2014, 192:6053-61.
  • [41]Towne JE, Garka KE, Renshaw BR, Virca GD, Sims JE: Interleukin (IL)-1F6, IL-1F8, and IL-1F9 signal through IL-1Rrp2 and IL-1RAcP to activate the pathway leading to NF-kappaB and MAPKs. J Biol Chem. 2004, 279:13677-88.
  • [42]Ramadas RA, Ewart SL, Medoff BD, LeVine AM: Interleukin-1 family member 9 stimulates chemokine production and neutrophil influx in mouse lungs. Am J Respir Cell Mol Biol. 2011, 44:134-45.
  • [43]Blumberg H, Dinh H, Trueblood ES, Pretorius J, Kugler D, Weng N, et al.: Opposing activities of two novel members of the IL-1 ligand family regulate skin inflammation. J Exp Med. 2007, 204:2603-14.
  • [44]Blumberg H, Dinh H, Dean CJ, Trueblood ES, Bailey K, Shows D, et al.: IL-1RL2 and its ligands contribute to the cytokine network in psoriasis. J Immunol. 2010, 185:4354-62.
  • [45]Onoufriadis A, Simpson MA, Pink AE, Di Meglio P, Smith CH, Pullabhatla V, et al.: Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin disease known as generalized pustular psoriasis. Am J Hum Genet. 2011, 89:432-7.
  • [46]Sugiura K, Takeichi T, Kono M, Ogawa Y, Shimoyama Y, Muro Y, et al.: A novel IL36RN/IL1F5 homozygous nonsense mutation, p.Arg10X, in a Japanese patient with adult-onset generalized pustular psoriasis. Br J Dermatol 2012, 167:699-701.
  • [47]Tortola L, Rosenwald E, Abel B, Blumberg H, Schafer M, Coyle AJ, et al.: Psoriasiform dermatitis is driven by IL-36-mediated DC-keratinocyte crosstalk. J Clin Invest. 2012, 122:3965-76.
  • [48]Sugiura K, Takemoto A, Yamaguchi M, Takahashi H, Shoda Y, Mitsuma T, et al.: The majority of generalized pustular psoriasis without psoriasis vulgaris is caused by deficiency of interleukin-36 receptor antagonist. J Invest Dermatol. 2013, 133:2514-21.
  • [49]Farooq M, Nakai H, Fujimoto A, Fujikawa H, Matsuyama A, Kariya N, et al.: Mutation analysis of the IL36RN gene in 14 Japanese patients with generalized pustular psoriasis. Hum Mutat. 2013, 34:176-83.
  • [50]Kanazawa N, Nakamura T, Mikita N, Furukawa F: Novel IL36RN mutation in a Japanese case of early onset generalized pustular psoriasis. J Dermatol. 2013, 40:749-51.
  • [51]Audoy-Remus J, Richard JF, Soulet D, Zhou H, Kubes P, Vallieres L: Rod-Shaped monocytes patrol the brain vasculature and give rise to perivascular macrophages under the influence of proinflammatory cytokines and angiopoietin-2. J Neurosci. 2008, 28:10187-99.
  • [52]Bedard A, Tremblay P, Chernomoretz A, Vallieres L: Identification of genes preferentially expressed by microglia and upregulated during cuprizone-induced inflammation. Glia. 2007, 55:777-89.
  • [53]Saura J, Tusell JM, Serratosa J: High-yield isolation of murine microglia by mild trypsinization. Glia. 2003, 44:183-9.
  • [54]Luu-The V, Paquet N, Calvo E, Cumps J: Improved real-time RT-PCR method for high-throughput measurements using second derivative calculation and double correction. Biotechniques. 2005, 38:287-93.
  • [55]Bettelli E, Pagany M, Weiner HL, Linington C, Sobel RA, Kuchroo VK: Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J Exp Med. 2003, 197:1073-81.
  • [56]Kolaczkowska E, Kubes P: Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013, 13:159-75.
  • [57]D’Erme AM, Wilsmann-Theis D, Wagenpfeil J, Hölzel M, Ferring-Schmitt S, Sternberg S, et al.: IL-36γ (IL-1F9) is a biomarker for psoriasis skin lesions. J Invest Dermatol. 2015, 135:1025-32.
  • [58]Keermann M, Kõks S, Reimann E, Prans E, Abram K, Kingo K: Transcriptional landscape of psoriasis identifies the involvement of IL36 and IL36RN. BMC Genomics. 2015, 16:322. BioMed Central Full Text
  • [59]Lamacchia C, Palmer G, Rodriguez E, Martin P, Vigne S, Seemayer CA, et al.: The severity of experimental arthritis is independent of IL-36 receptor signaling. Arthritis Res Ther. 2013, 15:R38. BioMed Central Full Text
  • [60]Derer A, Groetsch B, Harre U, Böhm C, Towne J, Schett G, et al.: Blockade of IL-36 receptor signaling does not prevent from TNF-induced arthritis. PLoS One. 2014., 9Article ID e101954
  • [61]Segueni N, Vigne S, Palmer G, Bourigault ML, Olleros ML, Vesin D, et al.: Limited contribution of IL-36 versus IL-1 and TNF pathways in host response to mycobacterial infection. PLoS One. 2015., 10Article ID e0126058
  • [62]Pinegin B, Vorobjeva N, Pinegin V: Neutrophil extracellular traps and their role in the development of chronic inflammation and autoimmunity. Autoimmun Rev. 2015, 14:633-40.
  • [63]Costelloe C, Watson M, Murphy A, McQuillan K, Loscher C, Armstrong ME, et al.: IL-1F5 mediates anti-inflammatory activity in the brain through induction of IL-4 following interaction with SIGIRR/TIR8. J Neurochem. 2008, 105:1960-9.
  • [64]Kumar S, McDonnell PC, Lehr R, Tierney L, Tzimas MN, Griswold DE, et al.: Identification and initial characterization of four novel members of the interleukin-1 family. J Biol Chem. 2000, 275:10308-14.
  文献评价指标  
  下载次数:0次 浏览次数:15次