Journal of Neuroinflammation | |
Differential expression and clinical significance of three inflammation-related microRNAs in gangliogliomas | |
E. Aronica4  A. Y. N. Schouten-van Meeteren1  P. C. van Rijen3  W. G. M. Spliet2  J. J. Anink5  A. M. Iyer5  J. van Scheppingen5  A. S. Prabowo5  | |
[1] Department of Pediatric Oncology, Emma Children’s Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands;Department of Pathology, Rudolf Magnus Institute for Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands;Department of Neurosurgery, Rudolf Magnus Institute for Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands;Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands;Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands | |
关键词: Epilepsy; Inflammation; Immunohistochemistry; In situ hybridization; Real-time polymerase chain reactions; miRNA; Gangliogliomas; | |
Others : 1221989 DOI : 10.1186/s12974-015-0315-7 |
|
received in 2014-12-08, accepted in 2015-04-30, 发布年份 2015 | |
【 摘 要 】
Purpose
miR21, miR146, and miR155 represent a trio of microRNAs which has been shown to play a key role in the regulation of immune and inflammatory responses. In the present study, we investigated the differential expression and clinical significance of these three miRNAs in glioneuronal tumors (gangliogliomas, GGs) which are characterized by prominent activation of the innate immune response.
Methods
The expression levels of miR21, miR146, and miR155 were evaluated using Taqman PCR in 34 GGs, including 15 cases with sufficient amount of perilesional cortex. Their expression was correlated with the tumor features and the clinical history of epilepsy. In addition, in situ hybridization was used to evaluate their cellular distribution in both tumor and peritumoral cortex.
Results
Increased expression of miR146a was observed in both tumor and peritumoral cortex compared to control samples. miR146a was detected in both neuronal and astroglial cells. Tumor and peritumoral miR146a expression was negatively correlated with frequency of seizures and the density of activated microglial cells. Neuronal and astroglial expression was observed for both miR21 and miR155 with increased expression of miR21 within the tumor and miR155 in the peritumoral region. Negative correlations were observed between the miRNA levels and the expression of putative targets within the astroglial component of the tumor.
Conclusion
We report a differential regulation of three miRNAs, known to be related to inflammation, in both tumor and peritumoral cortex of patients with GG. Moreover, our findings suggest a functional relationship between miR146a expression and epilepsy, either directly in epileptogenesis or as modulation of seizure activity.
【 授权许可】
2015 Prabowo et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150804144537914.pdf | 2101KB | download | |
Fig. 5. | 26KB | Image | download |
Fig. 4. | 11KB | Image | download |
Fig. 3. | 246KB | Image | download |
Fig. 2. | 26KB | Image | download |
Fig. 1. | 9KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
【 参考文献 】
- [1]Blumcke I, Aronica E, Urbach H, Alexopoulos A, Gonzalez-Martinez JA: A neuropathology-based approach to epilepsy surgery in brain tumors and proposal for a new terminology use for long-term epilepsy-associated brain tumors. Acta Neuropathol 2014, 128:39-54.
- [2]Thom M, Blumcke I, Aronica E: Long-term epilepsy-associated tumors. Brain Pathol 2012, 22:350-79.
- [3]Blumcke I, Wiestler OD: Gangliogliomas: an intriguing tumor entity associated with focal epilepsies. J Neuropathol Exp Neurol 2002, 61:575-84.
- [4]Majores M, von Lehe M, Fassunke J, Schramm J, Becker AJ, Simon M: Tumor recurrence and malignant progression of gangliogliomas. Cancer 2008, 113:3355-63.
- [5]Giulioni M, Gardella E, Rubboli G, Roncaroli F, Zucchelli M, Bernardi B, et al.: Lesionectomy in epileptogenic gangliogliomas: seizure outcome and surgical results. J Clin Neurosci 2006, 13:529-35.
- [6]Englot DJ, Berger MS, Barbaro NM, Chang EF: Factors associated with seizure freedom in the surgical resection of glioneuronal tumors. Epilepsia 2012, 53:51-7.
- [7]Ravizza T, Boer K, Redeker S, Spliet WG, van Rijen PC, Troost D, et al.: The IL-1beta system in epilepsy-associated malformations of cortical development. Neurobiol Dis 2006, 24:128-43.
- [8]Aronica E, Boer K, Becker A, Redeker S, Spliet WG, van Rijen PC, et al.: Gene expression profile analysis of epilepsy-associated gangliogliomas. Neuroscience 2008, 151:272-92.
- [9]Prabowo AS, Iyer AM, Anink JJ, Spliet WG, van Rijen PC, Aronica E: Differential expression of major histocompatibility complex class I in developmental glioneuronal lesions. J Neuroinflammation 2013, 10:12. BioMed Central Full Text
- [10]Prabowo AS, Iyer AM, Veersema TJ, Anink JJ, Schouten-van Meeteren AY, Spliet WG, et al.: BRAF V600E mutation is associated with mTOR signaling activation in glioneuronal tumors. Brain Pathol 2014, 24:52-66.
- [11]Aronica E, Crino PB: Inflammation in epilepsy: clinical observations. Epilepsia 2011, 52(Suppl 3):26-32.
- [12]Vezzani A, French J, Bartfai T, Baram TZ: The role of inflammation in epilepsy. Nat Rev Neurol 2011, 7:31-40.
- [13]Vezzani A, Auvin S, Ravizza T, Aronica E: Glia-neuronal interactions in ictogenesis and epileptogenesis: role of inflammatory mediators. In Jasper’s basic mechanisms of the epilepsies. 4th edition. Edited by Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV. National Center for Biotechnology Information (US), Bethesda; 2012.
- [14]Aronica E, Ravizza T, Zurolo E, Vezzani A: Astrocyte immune responses in epilepsy. Glia 2012, 60:1258-68.
- [15]Aronica E, Gorter JA, Redeker S, Ramkema M, Spliet WG, van Rijen PC, et al.: Distribution, characterization and clinical significance of microglia in glioneuronal tumours from patients with chronic intractable epilepsy. Neuropathol Appl Neurobiol 2005, 31:280-91.
- [16]Boer K, Spliet WG, van Rijen PC, Redeker S, Troost D, Aronica E: Evidence of activated microglia in focal cortical dysplasia. J Neuroimmunol 2006, 173:188-95.
- [17]Sethi P, Lukiw WJ: Micro-RNA abundance and stability in human brain: specific alterations in Alzheimer’s disease temporal lobe neocortex. Neurosci Lett 2009, 459:100-4.
- [18]Li L, Chen XP, Li YJ: MicroRNA-146a and human disease. Scand J Immunol 2010, 71:227-31.
- [19]Ha TY: MicroRNAs in human diseases: from cancer to cardiovascular disease. Immune Netw 2011, 11:135-54.
- [20]Rao P, Benito E, Fischer A: MicroRNAs as biomarkers for CNS disease. Front Mol Neurosci 2013, 6:39.
- [21]Henshall DC: MicroRNAs in the pathophysiology and treatment of status epilepticus. Front Mol Neurosci 2013, 6:37.
- [22]Li MM, Li XM, Zheng XP, Yu JT, Tan L: MicroRNAs dysregulation in epilepsy. Brain Res 2014, 1584:94-104.
- [23]Kretschmann A, Danis B, Andonovic L, Abnaof K, van Rikxoort M, Siegel F, et al.: Different microRNA profiles in chronic epilepsy versus acute seizure mouse models. J Mol Neurosci 2015, 55(2):466-79.
- [24]Kan AA, van Erp S, Derijck AA, de Wit M, Hessel EV, O’Duibhir E, et al.: Genome-wide microRNA profiling of human temporal lobe epilepsy identifies modulators of the immune response. Cell Mol Life Sci 2012, 69:3127-45.
- [25]Iyer A, Zurolo E, Prabowo A, Fluiter K, Spliet WG, van Rijen PC, et al.: MicroRNA-146a: a key regulator of astrocyte-mediated inflammatory response. PLoS ONE 2012., 7Article ID e44789
- [26]Gorter JA, Iyer A, White I, Colzi A, van Vliet EA, Sisodiya S, et al.: Hippocampal subregion-specific microRNA expression during epileptogenesis in experimental temporal lobe epilepsy. Neurobiol Dis 2014, 62:508-20.
- [27]Taganov KD, Boldin MP, Chang KJ, Baltimore D: NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 2006, 103:12481-6.
- [28]Sheedy FJ, O’Neill LA: Adding fuel to fire: microRNAs as a new class of mediators of inflammation. Ann Rheum Dis 2008, 67 Suppl 3:iii50-5.
- [29]Cui JG, Li YY, Zhao Y, Bhattacharjee S, Lukiw WJ: Differential regulation of interleukin-1 receptor-associated kinase-1 (IRAK-1) and IRAK-2 by microRNA-146a and NF-kappaB in stressed human astroglial cells and in Alzheimer disease. J Biol Chem 2010, 285:38951-60.
- [30]Quinn SR, O’Neill LA: A trio of microRNAs that control Toll-like receptor signalling. Int Immunol 2011, 23:421-5.
- [31]O’Neill LA, Sheedy FJ, McCoy CE: MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol 2011, 11:163-75.
- [32]He X, Jing Z, Cheng G: MicroRNAs: new regulators of Toll-like receptor signalling pathways. Biomed Res Int 2014, 2014:945169.
- [33]Louis DN, Ohgaki H, Wiestler OD, Cavanee WK: WHO classification of tumours of the central nervous system. IARC, Lyon; 2007.
- [34]van Veelen CW, Debets RM, van Huffelen AC, van Emde BW, Binnie CD, Storm van Leeuwen W, et al.: Combined use of subdural and intracerebral electrodes in preoperative evaluation of epilepsy. Neurosurgery 1990, 26:93-101.
- [35]Engel JJ: Outcome with respect to epileptic seizures. In Surgical treatment of the epilepsies. Edited by Engel JJ. Raven, New York; 1993:609-21.
- [36]Ramakers C, Ruijter JM, Deprez RH, Moorman AF: Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 2003, 339:62-6.
- [37]Ruijter JM, Ramakers C, Hoogaars WM, Karlen Y, Bakker O, van den Hoff MJ, et al.: Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 2009., 37Article ID e45
- [38]Aronica E, Gorter JA, Jansen GH, van Veelen CW, van Rijen PC, Ramkema M, et al.: Expression and cell distribution of group I and group II metabotropic glutamate receptor subtypes in Taylor-type focal cortical dysplasia. Epilepsia 2003, 44:785-95.
- [39]Capper D, Preusser M, Habel A, Sahm F, Ackermann U, Schindler G, et al.: Assessment of BRAF V600E mutation status by immunohistochemistry with a mutation-specific monoclonal antibody. Acta Neuropathol 2011, 122:11-9.
- [40]Aronica E, Boer K, van Vliet EA, Baayen JC, Redeker S, Spliet WGM, et al.: Complement activation in experimental and human temporal lobe epilepsy. Neurobiol Dis 2007, 26:497-511.
- [41]Maldonado M, Baybis M, Newman D, Kolson DL, Chen W, McKhann G 2nd, et al.: Expression of ICAM-1, TNF-alpha, NF kappa B, and MAP kinase in tubers of the tuberous sclerosis complex. Neurobiol Dis 2003, 14:279-90.
- [42]Aronica E, Gorter JA, Rozemuller AJ, Yankaya B, Troost D: Interleukin-1 beta down-regulates the expression of metabotropic glutamate receptor 5 in cultured human astrocytes. J Neuroimmunol 2005, 160:188-94.
- [43]de Biase D, Visani M, Morandi L, Marucci G, Taccioli C, Cerasoli S, et al.: miRNAs expression analysis in paired fresh/frozen and dissected formalin fixed and paraffin embedded glioblastoma using real-time pCR. PLoS ONE 2012, 7:e35596.
- [44]Scott A, Ambannavar R, Jeong J, Liu ML, Cronin MT: RT-PCR-based gene expression profiling for cancer biomarker discovery from fixed, paraffin-embedded tissues. Methods Mol Biol 2011, 724:239-57.
- [45]Vezzani A, Aronica E, Mazarati A, Pittman QJ: Epilepsy and brain inflammation. Exp Neurol 2011, 244:11-21.
- [46]Vezzani A, Bartfai T, Bianchi M, Rossetti C, French J: Therapeutic potential of new antiinflammatory drugs. Epilepsia 2011, 52(Suppl 8):67-9.
- [47]Aronica E, Crino PB: Epilepsy related to developmental tumors and malformations of cortical development. Neurotherapeutics 2014, 11:251-68.
- [48]Maroso M, Balosso S, Ravizza T, Liu J, Aronica E, Iyer AM, et al.: Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med 2010, 16:413-9.
- [49]Iori V, Maroso M, Rizzi M, Iyer AM, Vertemara R, Carli M, et al.: Receptor for advanced glycation endproducts is upregulated in temporal lobe epilepsy and contributes to experimental seizures. Neurobiol Dis 2013, 58C:102-14.
- [50]Prabowo AS, Iyer AM, Veersema TJ, Anink JJ, Schouten-van Meeteren AYN, Spliet WGM, et al.: BRAF V600E mutation is associated with mTOR signalling activation in glioneuronal tumors. Brain Pathol 2014, 24(1):52-66.
- [51]Buller B, Liu X, Wang X, Zhang RL, Zhang L, Hozeska-Solgot A, et al.: MicroRNA-21 protects neurons from ischemic death. FEBS J 2010, 277:4299-307.
- [52]Bhalala OG, Pan L, Sahni V, McGuire TL, Gruner K, Tourtellotte WG, et al.: MicroRNA-21 regulates astrocytic response following spinal cord injury. J Neurosci 2012, 32:17935-47.
- [53]Zhang L, Dong LY, Li YJ, Hong Z, Wei WS: miR-21 represses FasL in microglia and protects against microglia-mediated neuronal cell death following hypoxia/ischemia. Glia 2012, 60:1888-95.
- [54]Krichevsky AM, Gabriely G: miR-21: a small multi-faceted RNA. J Cell Mol Med 2009, 13:39-53.
- [55]Kumarswamy R, Volkmann I, Thum T: Regulation and function of miRNA-21 in health and disease. RNA Biol 2011, 8:706-13.
- [56]Tili E, Michaille JJ, Croce CM: MicroRNAs play a central role in molecular dysfunctions linking inflammation with cancer. Immunol Rev 2013, 253:167-84.
- [57]Risbud RM, Lee C, Porter BE: Neurotrophin-3 mRNA a putative target of miR21 following status epilepticus. Brain Res 2011, 1424:53-9.
- [58]Gorter JA, Van Vliet E, Aronica E, Rauwerda H, Breit T, da Silva FHL, et al.: Potential new antiepileptogenic targets indicated by microarray analysis in a rat model for temporal lobe epilepsy. J Neurosci 2006, 26:11083-110.
- [59]Sheedy FJ, Palsson-McDermott E, Hennessy EJ, Martin C, O’Leary JJ, Ruan Q, et al.: Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 2010, 11:141-7.
- [60]O’Connell RM, Rao DS, Baltimore D: MicroRNA regulation of inflammatory responses. Annu Rev Immunol 2012, 30:295-312.
- [61]Lee JY, Park AK, Lee ES, Park WY, Park SH, Choi JW, et al.: miRNA expression analysis in cortical dysplasia: regulation of mTOR and LIS1 pathway. Epilepsy Res 2014, 108:433-41.
- [62]Aronica E, Fluiter K, Iyer A, Zurolo E, Vreijling J, van Vliet EA, et al.: Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy. Eur J Neurosci 2010, 31:1100-7.
- [63]Omran A, Peng J, Zhang C, Xiang QL, Xue J, Gan N, et al.: Interleukin-1beta and microRNA-146a in an immature rat model and children with mesial temporal lobe epilepsy. Epilepsia 2012, 53:1215-24.
- [64]Iori V, Iyer A, Aronica E, Vezzani A: Epigenetic control of brain inflammation in epilepsy: new therapeutic opportunity by targeting miR146a. Abstract In Proceedings of American Epilepsy Society conference, Philadelphia. Epilepsy Curr 2014, 15(s1):364.
- [65]Lehmann SM, Kruger C, Park B, Derkow K, Rosenberger K, Baumgart J, et al.: An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci 2012, 15:827-35.
- [66]Zhang Q, Xu J, Chen Q, Chen X, Zen K, Zhang CY: Selective secretion of microRNA in CNS system. Protein Cell 2013, 4:243-7.
- [67]Jin XF, Wu N, Wang L, Li J: Circulating microRNAs: a novel class of potential biomarkers for diagnosing and prognosing central nervous system diseases. Cel Mol Neurobiol 2013, 33:601-13.
- [68]Challagundla KB, Fanini F, Vannini I, Wise P, Murtadha M, Malinconico L, et al.: MicroRNAs in the tumor microenvironment: solving the riddle for a better diagnostics. Expert Rev Mol Diagn 2014, 14:565-74.
- [69]Blumcke I, Giencke K, Wardelmann E, Beyenburg S, Kral T, Sarioglu N, et al.: The CD34 epitope is expressed in neoplastic and malformative lesions associated with chronic, focal epilepsies. Acta Neuropathol 1999, 97:481-90.
- [70]Mei J, Bachoo R, Zhang CL: MicroRNA-146a inhibits glioma development by targeting Notch1. Mol Cell Biol 2011, 31:3584-92.
- [71]Hung PS, Liu CJ, Chou CS, Kao SY, Yang CC, Chang KW, et al.: miR-146a enhances the oncogenicity of oral carcinoma by concomitant targeting of the IRAK1, TRAF6 and NUMB genes. PLoS ONE 2013, 8:e79926.
- [72]Hwang WL, Jiang JK, Yang SH, Huang TS, Lan HY, Teng HW, et al.: MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat Cell Biol 2014, 16:268-80.
- [73]Gulino A, Di Marcotullio L, Screpanti I: The multiple functions of Numb. Exp Cell Res 2010, 316:900-6.
- [74]Di Marcotullio L, Greco A, Mazza D, Canettieri G, Pietrosanti L, Infante P, et al.: Numb activates the E3 ligase Itch to control Gli1 function through a novel degradation signal. Oncogene 2011, 30:65-76.
- [75]Jiang X, Xing H, Kim TM, Jung Y, Huang W, Yang HW, et al.: Numb regulates glioma stem cell fate and growth by altering epidermal growth factor receptor and Skp1-Cullin-F-box ubiquitin ligase activity. Stem Cells 2012, 30:1313-26.
- [76]Schindler G, Capper D, Meyer J, Janzarik W, Omran H, Herold-Mende C, et al.: Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 2011, 121:397-405.
- [77]Dahiya S, Haydon DH, Alvarado D, Gurnett CA, Gutmann DH, Leonard JR: BRAF(V600E) mutation is a negative prognosticator in pediatric ganglioglioma. Acta Neuropathol 2013, 125:901-10.
- [78]Forloni M, Dogra SK, Dong Y, Conte D Jr, Ou J, Zhu LJ, et al.: miR-146a promotes the initiation and progression of melanoma by activating Notch signaling. Elife 2014, 3:e01460.
- [79]van Breemen MS, Wilms EB, Vecht CJ: Epilepsy in patients with brain tumours: epidemiology, mechanisms, and management. Lancet Neurol 2007, 6:421-30.
- [80]Rajneesh KF, Binder DK: Tumor-associated epilepsy. Neurosurg Focus 2009., 27Article ID E4
- [81]de Groot M, Reijneveld JC, Aronica E, Heimans JJ: Epilepsy in patients with a brain tumour: focal epilepsy requires focused treatment. Brain 2012, 135:1002-16.
- [82]Zhou J, Wang W, Gao Z, Peng X, Chen X, Chen W, et al.: MicroRNA-155 promotes glioma cell proliferation via the regulation of MXI1. PLoS ONE 2013., 8Article ID e83055
- [83]D’Urso PI, D’Urso OF, Storelli C, Mallardo M, Gianfreda CD, Montinaro A, et al.: miR-155 is up-regulated in primary and secondary glioblastoma and promotes tumour growth by inhibiting GABA receptors. Int J Oncol 2012, 41:228-34.
- [84]Tarassishin L, Loudig O, Bauman A, Shafit-Zagardo B, Suh HS, Lee SC: Interferon regulatory factor 3 inhibits astrocyte inflammatory gene expression through suppression of the proinflammatory miR-155 and miR-155*. Glia 2011, 59:1911-22.
- [85]Junker A, Krumbholz M, Eisele S, Mohan H, Augstein F, Bittner R, et al.: MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain 2009, 132:3342-52.
- [86]Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B, et al.: Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 2007, 179:5082-9.
- [87]Staszel T, Zapala B, Polus A, Sadakierska-Chudy A, Kiec-Wilk B, Stepien E, et al.: Role of microRNAs in endothelial cell pathophysiology. Pol Arch Med Wewn 2011, 121:361-6.
- [88]Kong W, He L, Richards EJ, Challa S, Xu CX, Permuth-Wey J, et al.: Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene 2014, 33:679-89.
- [89]Lopez-Ramirez MA, Wu D, Pryce G, Simpson JE, Reijerkerk A, King-Robson J, et al.: MicroRNA-155 negatively affects blood–brain barrier function during neuroinflammation. FASEB J 2014, 28:2551-65.
- [90]Wu XY, Fan WD, Fang R, Wu GF: Regulation of microRNA-155 in endothelial inflammation by targeting nuclear factor (NF)-kappaB P65. J Cell Biochem 2014, 115:1928-36.
- [91]Ashhab MU, Omran A, Kong H, Gan N, He F, Peng J, et al.: Expressions of tumor necrosis factor alpha and microRNA-155 in immature rat model of status epilepticus and children with mesial temporal lobe epilepsy. J Mol Neurosci 2013, 51:950-8.
- [92]Liu DZ, Tian Y, Ander BP, Xu H, Stamova BS, Zhan X, et al.: Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab 2010, 30:92-101.
- [93]Zhou R, Yuan P, Wang Y, Hunsberger JG, Elkahloun A, Wei Y, et al.: Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers. Neuropsychopharmacology 2009, 34:1395-405.
- [94]Shizu R, Shindo S, Yoshida T, Numazawa S: MicroRNA-122 down-regulation is involved in phenobarbital-mediated activation of the constitutive androstane receptor. PLoS ONE 2012., 7Article ID e41291