期刊论文详细信息
EvoDevo
Cellular dynamics during regeneration of the flatworm Monocelis sp. (Proseriata, Platyhelminthes)
Bernhard Egger1  Maximilian J Telford1  Raimund Schnegg2  Johannes Girstmair1 
[1] Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, WC1E 6BT London, UK;Research Unit of Ecotoxicology, Institute of Zoology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
关键词: turbellarian;    regeneration;    proseriate;    proliferation;    planarian;    flatworm;    blastema;   
Others  :  1093266
DOI  :  10.1186/2041-9139-5-37
 received in 2014-07-29, accepted in 2014-09-16,  发布年份 2014
PDF
【 摘 要 】

Background

Proseriates (Proseriata, Platyhelminthes) are free-living, mostly marine, flatworms measuring at most a few millimetres. In common with many flatworms, they are known to be capable of regeneration; however, few studies have been done on the details of regeneration in proseriates, and none cover cellular dynamics. We have tested the regeneration capacity of the proseriate Monocelis sp. by pre-pharyngeal amputation and provide the first comprehensive picture of the F-actin musculature, serotonergic nervous system and proliferating cells (S-phase in pulse and pulse-chase experiments and mitoses) in control animals and in regenerates.

Results

F-actin staining revealed a strong body wall, pharynx and dorsoventral musculature, while labelling of the serotonergic nervous system showed an orthogonal pattern and a well developed subepidermal plexus. Proliferating cells were distributed in two broad lateral bands along the anteroposterior axis and their anterior extension was delimited by the brain. No proliferating cells were detected in the pharynx or epidermis.

Monocelis sp. was able to regenerate the pharynx and adhesive organs at the tip of the tail plate within 2 or 3 days of amputation, and genital organs within 8 to 10 days. Posterior pieces were not able to regenerate a head.

The posterior regeneration blastema was found to be a centre of cell proliferation, whereas within the pharynx primordium, little or no proliferation was detected. The pharynx regenerated outside of the blastema and was largely, but not solely formed by cells that were proliferating at the time of amputation.

Conclusions

Our findings suggest that proliferating cells or their offspring migrated to the place of organ differentiation and then stopped proliferating at that site. This mode of rebuilding organs resembles the mode of regeneration of the genital organs in another flatworm, Macrostomum lignano. Pharynx regeneration resembles embryonic development in Monocelis fusca and hints at the vertically directed pharynx being plesiomorphic in proseriates.

Proliferation within the regeneration blastema has been detected in anterior and posterior blastemas of other flatworms, but is notably missing in triclads. The phylogenetic relationships of the flatworms studied indicate that proliferation within the blastema is the plesiomorphic condition in Platyhelminthes.

【 授权许可】

   
2014 Girstmair et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150130161848627.pdf 3701KB PDF download
Figure 8. 63KB Image download
Figure 7. 136KB Image download
Figure 6. 232KB Image download
Figure 5. 233KB Image download
Figure 4. 207KB Image download
Figure 3. 179KB Image download
Figure 2. 305KB Image download
Figure 1. 84KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Littlewood DTJ, Curini-Galletti M, Herniou EA: The interrelationships of Proseriata (Platyhelminthes: Seriata) tested with molecules and morphology. Mol Phylogenet Evol 2000, 16:449-466.
  • [2]Curini-Galletti M, Webster BL, Huyse T, Casu M, Schockaert ER, Artois AJ, Littlewood DTJ: New insights on the phylogenetic relationships of the Proseriata (Platyhelminthes), with proposal of a new genus of the family Coelogynoporidae. Zootaxa 2010, 2537:1-18.
  • [3]Ax P: Plathelminthes aus Brackgewässern der Nordhalbkugel. Mainz: Akademie der Wissenschaften und der Literatur; 2008.
  • [4]Pallas PS: Spicilegia zoologica, quibus novae imprimis et obscurae animalium species iconibus, descriptionibus atque commentariis illustrantur, Fasciculus primus-XIV. Berolini: Gottlieb August Lange; 1774.
  • [5]Dalyell JG: Observations on Some Interesting Phenomena in Animal Physiology Exhibited By Several Species of Planariae. Edinburgh: Archibald Constable; 1814.
  • [6]Wagner DE, Wang IE, Reddien PW: Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science 2011, 332:811-816.
  • [7]Egger B, Gschwentner R, Rieger R: Free-living flatworms under the knife: past and present. Dev Genes Evol 2007, 217:89-104.
  • [8]Giesa S: Die Embryonalentwicklung von Monocelis fusca Oersted (Turbellaria, Proseriata). Z Morph Ökol Tiere 1966, 57:137-230.
  • [9]von Graff L: Monographie der Turbellarien. Wilhelm Engelmann: I. Rhabdocoelida. Leipzig; 1882.
  • [10]Steinböck O: Turbellarienstudien am Lago Maggiore. I. Mem Ist Ital Idrobiol 1951, 6:137-164.
  • [11]Pechlaner R: Die Regenerationsfähigkeit von Otomesostoma auditivum (Forel et Duplessis) (Turbellaria). Arch Entwm 1957, 150:105-114.
  • [12]Nimeth KT, Egger B, Rieger R, Salvenmoser W, Peter R, Gschwentner R: Regeneration in Macrostomum lignano (Platyhelminthes): cellular dynamics in the neoblast stem cell system. Cell Tissue Res 2007, 327:637-646.
  • [13]Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A: RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols 2013, 8:1494-1512.
  • [14]Lagesen K, Hallin P, Rødland EA, Stærfeldt H-H, Torbjørn R, Ussery DW: RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucl Acids Res 2007, 35:3100-3108.
  • [15]Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R: A new bioinformatics analysis tools framework at EMBL-EBI. Nucl Acids Res 2010, 38(Suppl):W695-W699.
  • [16]Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T: trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25:1972-1973.
  • [17]Swofford DL: PAUP* 4.0: Phylogenetic Analysis Using Parsimony (*And Other Methods). Sunderland, MA: Sinauer Associates; 2002.
  • [18]Örsted AS: Entwurf einer systematischen Eintheilung und speciellen Beschreibung der Plattwürmer, auf microscopische Untersuchungen gegründet. Copenhagen: CA Reitzel; 1844.
  • [19]Martens PM, Curini-Galletti MC: Karyological study of three Monocelis-species, and description of a new species from the Mediterranean, Monocelis longistyla sp. n. (Monocelididae, Plathelminthes). Microfauna Marina 1987, 3:297-308.
  • [20]Reuter M, Kreshchenko N: Flatworm asexual multiplication implicates stem cells and regeneration. Can J Zool 2004, 82:334-356.
  • [21]Teshirogi W, Ishida S, Yamazaki H: Regenerative capacities of transverse pieces in the two species of freshwater planarian, Dendrocoelopsis lactea and Polycelis sapporo. Sci Rep Hirosaki Univ 1977, 24:55-72.
  • [22]Tyler S, Schilling S, Hooge M, Bush LF: Turbellarian Taxonomic Database. Version 1.7. [http://turbellaria.umaine.edu webcite]
  • [23]Egger B, Gschwentner R, Hess MW, Nimeth KT, Adamski Z, Willems M, Rieger R, Salvenmoser W: The caudal regeneration blastema is an accumulation of rapidly proliferating stem cells in the flatworm Macrostomum lignano. BMC Dev Biol 2009, 9:41. BioMed Central Full Text
  • [24]MacKenzie BR, Schiedek D: Long-term sea surface temperature baselines - time series, spatial covariation and implications for biological processes. J Mar Syst 2007, 68:405-420.
  • [25]Saló E, Baguñà J: Cell movement in intact and regenerating planarians. Quantitation using chromosomal, nuclear and cytoplasmic markers. J Embryol Exp Morphol 1985, 89:57-70.
  • [26]Ladurner P, Rieger R, Baguñà J: Spatial distribution and differentiation potential of stem cells in hatchlings and adults in the marine platyhelminth Macrostomum sp.: a bromodeoxyuridine analysis. Dev Biol 2000, 226:231-241.
  • [27]Dirks U, Gruber-Vodicka HR, Egger B, Ott JA: Proliferation pattern during rostrum regeneration of the symbiotic flatworm Paracatenula galateia: a pulse-chase-pulse analysis. Cell Tissue Res 2012, 349:517-525.
  • [28]Dirks U, Gruber-Vodicka HR, Leisch N, Bulgheresi S, Egger B, Ladurner P, Ott JA: Bacterial symbiosis maintenance in the asexually reproducing and regenerating flatworm Paracatenula galateia. PLoS ONE 2012, 7:e34709.
  • [29]Egger B, Steinke D, Tarui H, De Mulder K, Arendt D, Borgonie G, Funayama N, Gschwentner R, Hartenstein V, Hobmayer B, Hooge M, Hrouda M, Ishida S, Kobayashi C, Kuales G, Nishimura O, Pfister D, Rieger R, Salvenmoser W, Smith J III, Technau U, Tyler S, Agata K, Salzburger W, Ladurner P: To be or not to be a flatworm: the acoel controversy. PLoS ONE 2009, 4:e5502.
  • [30]Newmark PA, Sánchez Alvarado A: Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Dev Biol 2000, 220:142-153.
  • [31]Morita M, Best JB: Electron microscopic studies of planarian regeneration. IV. Cell division of neoblasts in Dugesia dorotocephala. J Exp Zool 1984, 229:425-436.
  • [32]Saló E, Baguñà J: Regeneration and pattern formation in planarians. I. The pattern of mitosis in anterior and posterior regeneration in Dugesia (G) tigrina, and a new proposal for blastema formation. J Embryol Exp Morphol 1984, 83:63-80.
  • [33]Martín-Durán JM, Egger B: Developmental diversity in free-living flatworms. EvoDevo 2012, 3:7. BioMed Central Full Text
  • [34]Laumer CE, Giribet G: Inclusive taxon sampling suggests a single, stepwise origin of ectolecithality in Platyhelminthes. Biol J Linn Soc 2014, 111:570-588.
  • [35]Bursey J, Smith JPS III, Litvaitis M: Kataplana celeretrix n. sp. (Platyhelminthes: Proseriata: Otoplanidae) from the coast of North Carolian, USA. Zootaxa 2012, 3184:59-63.
  • [36]Rieger RM, Tyler S, Smith JPS III, Rieger GE: Platyhelminthes: Turbellaria. In Microscopic Anatomy of Invertebrates Volume 3: Platyhelminthes and Nemertinea. Edited by Harrison FW. New York: Wiley-Liss; 1991:7-140.
  • [37]Rieger R, Salvenmoser W, Legniti A, Reindl S, Adam H, Simonsberger P, Tyler S: Organization and differentiation of the body-wall musculature in Macrostomum (Turbellaria, Macrostomidae). Hydrobiologia 1991, 227:119-129.
  • [38]Sopott-Ehlers B: Ultrastructural observations on paracnids. I: Coelogynopora axi Sopott (Turbellaria, Proseriata). Hydrobiologia 1981, 84:253-257.
  • [39]Salvenmoser W, Riedl D, Ladurner P, Rieger R: Early steps in the regeneration of the musculature in Macrostomum sp. (Macrostomorpha). Belg J Zool 2001, 131(Suppl 1):105-109.
  • [40]Cebrià F, Romero R: Body-wall muscle restoration dynamics are different in dorsal and ventral blastemas during planarian anterior regeneration. Belg J Zool 2001, 131(Suppl 1):111-115.
  • [41]Reuter M, Maule AG, Halton DW, Gustafsson MKS, Shaw C: The organization of the nervous system in Plathelminthes. The neuropeptide F-immunoreactive pattern in Catenulida, Macrostomida, Proseriata. Zoomorphology 1995, 115:83-97.
  • [42]Cebrià F, Newmark PA: Planarian homologs of netrin and netrin receptor are required for proper regeneration of the central nervous system and the maintenance of nervous system architecture. Development 2005, 132:3691-3703.
  文献评价指标  
  下载次数:77次 浏览次数:20次