期刊论文详细信息
Journal of Hematology & Oncology
In vitro and in vivo single-agent efficacy of checkpoint kinase inhibition in acute lymphoblastic leukemia
Giovanni Martinelli5  Pier Giuseppe Pelicci2  Stefano Pileri5  Pier Luigi Zinzani5  Domenico Russo1  Loredana Elia3  Antonella Vitale3  Maria Chiara Abbenante5  Emanuela Ottaviani5  Federica Cattina1  Viviana Guadagnuolo5  Claudia Venturi5  Silvia Pomella5  Enrica Imbrogno5  Simona Righi5  Annalisa Lonetti4  Cristina Papayannidis5  Anna Ferrari5  Enrico Derenzini5  Claudio Agostinelli5  Maria Vittoria Verga Falzacappa2  Andrea Ghelli Luserna Di Rorà5  Ilaria Iacobucci5 
[1] Hematology and BMT Unit, University of Brescia, Brescia, Italy;Department of Experimental Oncology, European Institute of Oncology, Milan, Italy;Division of Hematology, Department of Cellular Biotechnologies and Hematology, “Sapienza” University of Rome, Rome, Italy;Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy;Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology “L. e A. Seragnoli”, University of Bologna, Bologna, Italy
关键词: New targets;    Drug-sensitivity;    Checkpoint kinase;    DNA damage;    Acute lymphoblastic leukemia;   
Others  :  1233265
DOI  :  10.1186/s13045-015-0206-5
 received in 2015-07-09, accepted in 2015-09-28,  发布年份 2015
PDF
【 摘 要 】

Background

Although progress in children, in adults, ALL still carries a dismal outcome. Here, we explored the in vitro and in vivo activity of PF-00477736 (Pfizer), a potent, selective ATP-competitive small-molecule inhibitor of checkpoint kinase 1 (Chk1) and with lower efficacy of checkpoint kinase 2 (Chk2).

Methods

The effectiveness of PF-00477736 as single agent in B-/T-ALL was evaluated in vitro and in vivo studies as a single agent. The efficacy of the compound in terms of cytotoxicity, induction of apoptosis, and changes in gene and protein expression was assessed using different B-/T-ALL cell lines. Finally, the action of PF-00477736 was assessed in vivo using leukemic mouse generated by a single administration of the tumorigenic agent N-ethyl-N-nitrosourea.

Results

Chk1 and Chk2 are overexpressed concomitant with the presence of genetic damage as suggested by the nuclear labeling for γ-H2A.X (Ser139) in 68 % of ALL patients. In human B- and T-ALL cell lines, inhibition of Chk1/2 as a single treatment strategy efficiently triggered the Chk1-Cdc25-Cdc2 pathway resulting in a dose- and time-dependent cytotoxicity, induction of apoptosis, and increased DNA damage. Moreover, treatment with PF-00477736 showed efficacy ex vivo in primary leukemic blasts separated from 14 adult ALL patients and in vivo in mice transplanted with T-ALL, arguing in favor of its future clinical evaluation in leukemia.

Conclusions

In vitro, ex vivo, and in vivo results support the inhibition of Chk1 as a new therapeutic strategy in acute lymphoblastic leukemia, and they provide a strong rationale for its future clinical investigation.

【 授权许可】

   
2015 Iacobucci et al.

【 预 览 】
附件列表
Files Size Format View
20151119091528944.pdf 3868KB PDF download
Fig. 6. 71KB Image download
Fig. 5. 88KB Image download
Fig. 4. 79KB Image download
Fig. 3. 77KB Image download
Fig. 2. 64KB Image download
Fig. 1. 169KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

【 参考文献 】
  • [1]Conter V, Aricò M, Basso G, Biondi A, Barisone E, Messina C, Parasole R, De Rossi G, Locatelli F, Pession A, Santoro N, Micalizzi C, Citterio M, Rizzari C, Silvestri D, Rondelli R, Lo Nigro L, Ziino O, Testi AM, Masera G, Valsecchi MG. Long-term results of the Italian Association of Pediatric Hematology and Oncology (AIEOP) studies 82, 87, 88, 91 and 95 for childhood acute lymphoblastic leukemia. Leukemia. 2010; 24:255-64.
  • [2]Pui C-H, Robison LL, Look AT. Acute lymphoblastic leukaemia. Lancet. 2008; 371:1030-43.
  • [3]Moorman AV. The clinical relevance of chromosomal and genomic abnormalities in B-cell precursor acute lymphoblastic leukaemia. Blood Rev. 2012; 26:123-35.
  • [4]Bailey LC, Lange BJ, Rheingold SR, Bunin NJ. Bone-marrow relapse in paediatric acute lymphoblastic leukaemia. Lancet Oncol. 2008; 9(9):873-83.
  • [5]Fielding AK. Current therapeutic strategies in adult acute lymphoblastic leukemia. Hematol Oncol Clin North Am. 2011; 25(6):1255-79.
  • [6]Blasina A, Hallin J, Chen E, Arango ME, Kraynov E, Register J, Grant S, Ninkovic S, Chen P, Nichols T, O’Connor P, Anderes K. Breaching the DNA damage checkpoint via PF-00477736, a novel small-molecule inhibitor of checkpoint kinase 1. Mol Cancer Ther. 2008; 7:2394-404.
  • [7]Kortmansky J, Shah MA, Kaubisch A, Weyerbacher A, Yi S, Tong W, Sowers R, Gonen M, O’Reilly E, Kemeny N, Ilson DI, Saltz LB, Maki RG, Kelsen DP, Schwartz GK. Phase I trial of the cyclin-dependent kinase inhibitor and protein kinase C inhibitor 7-hydroxystaurosporine in combination with fluorouracil in patients with advanced solid tumors. J Clin Oncol. 2005; 23:1875-84.
  • [8]Zabludoff SD, Deng C, Grondine MR, Sheehy AM, Ashwell S, Caleb BL, Green S, Haye HR, Horn CL, Janetka JW, Liu D, Mouchet E, Ready S, Rosenthal JL, Queva C, Schwartz GK, Taylor KJ, Tse AN, Walker GE, White AM. AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies. Mol Cancer Ther. 2008; 7:2955-66.
  • [9]Sha S-K, Sato T, Kobayashi H, Ishigaki M, Yamamoto S, Sato H, Takada A, Nakajyo S, Mochizuki Y, Friedman JM, Cheng F-C, Okura T, Kimura R, Kufe DW, Vonhoff DD, Kawabe T. Cell cycle phenotype-based optimization of G2-abrogating peptides yields CBP501 with a unique mechanism of action at the G2 checkpoint. Mol Cancer Ther. 2007; 6:147-53.
  • [10]Zhang C, Yan Z, Painter CL, Zhang Q, Chen E, Arango ME, Kuszpit K, Zasadny K, Hallin M, Hallin J, Wong A, Buckman D, Sun G, Qiu M, Anderes K, Christensen JG. PF-00477736 mediates checkpoint kinase 1 signaling pathway and potentiates docetaxel-induced efficacy in xenografts. Clin Cancer Res. 2009; 15:4630-40.
  • [11]Syljuåsen RG, Sørensen CS, Nylandsted J, Lukas C, Lukas J, Bartek J. Inhibition of Chk1 by CEP-3891 accelerates mitotic nuclear fragmentation in response to ionizing radiation. Cancer Res. 2004; 64:9035-40.
  • [12]Syljuåsen RG, Sørensen CS, Hansen LT, Fugger K, Lundin C, Johansson F, Helleday T, Sehested M, Lukas J, Bartek J. Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol Cell Biol. 2005; 25:3553-62.
  • [13]Parsels LA, Morgan MA, Tanska DM, Parsels JD, Palmer BD, Booth RJ, Denny WA, Canman CE, Kraker AJ, Lawrence TS, Maybaum J. Gemcitabine sensitization by checkpoint kinase 1 inhibition correlates with inhibition of a Rad51 DNA damage response in pancreatic cancer cells. Mol Cancer Ther. 2009; 8:45-54.
  • [14]Karp JE, Thomas BM, Greer JM, Sorge C, Gore SD, Pratz KW, Smith BD, Flatten KS, Peterson K, Schneider P, Mackey K, Freshwater T, Levis MJ, McDevitt MA, Carraway HE, Gladstone DE, Showel MM, Loechner S, Parry DA, Horowitz JA, Isaacs R, Kaufmann SH. Phase I and pharmacologic trial of cytosine arabinoside with the selective checkpoint 1 inhibitor Sch 900776 in refractory acute leukemias. Clin Cancer Res. 2012; 18:6723-31.
  • [15]Maugeri-Saccà M, Bartucci M, De Maria R. Checkpoint kinase 1 inhibitors for potentiating systemic anticancer therapy. Cancer Treat Rev. 2013; 39(5):525-33.
  • [16]Mailand N, Falck J, Lukas C, Syljuâsen RG, Welcker M, Bartek J, Lukas J. Rapid destruction of human Cdc25A in response to DNA damage. Science. 2000; 288:1425-9.
  • [17]Kuntz K, O’Connell MJ. The G2 DNA damage checkpoint: could this ancient regulator be the achilles heel of cancer? Cancer Biol Ther. 2009; 8(15):1433-9.
  • [18]Sørensen CS, Syljuåsen RG, Falck J, Schroeder T, Rönnstrand L, Khanna KK, Zhou BB, Bartek J, Lukas J. Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell. 2003; 3:247-58.
  • [19]Chen M-S, Ryan CE, Piwnica-Worms H. Chk1 kinase negatively regulates mitotic function of Cdc25A phosphatase through 14-3-3 binding. Mol Cell Biol. 2003; 23:7488-97.
  • [20]Bartek J, Lukas J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell. 2003; 3(5):421-9.
  • [21]Stolz A, Ertych N, Bastians H. Tumor suppressor CHK2: regulator of DNA damage response and mediator of chromosomal stability. Clin Cancer Res. 2011; 17:401-5.
  • [22]Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM. ONCOMINE: a cancer microarray database and integrated data-mining platform1. Neoplasia. 2004; 6:1-6.
  • [23]Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res. 1993; 53:3976-85.
  • [24]Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science. 1997; 277:1501-5.
  • [25]Xu Y, Price BD. Chromatin dynamics and the repair of DNA double strand breaks. Cell Cycle. 2011; 10:261-7.
  • [26]Matsuura K, Wakasugi M, Yamashita K, Matsunaga T. Cleavage-mediated activation of Chk1 during apoptosis. J Biol Chem. 2008; 283:25485-91.
  • [27]Landau HJ, McNeely SC, Nair JS, Comenzo RL, Asai T, Friedman H, Jhanwar SC, Nimer SD, Schwartz GK. The checkpoint kinase inhibitor AZD7762 potentiates chemotherapy-induced apoptosis of p53-mutated multiple myeloma cells. Mol Cancer Ther. 2012; 11(8):1781-8.
  • [28]Wisdom R, Johnson RS, Moore C. c-Jun regulates cell cycle progression and apoptosis by distinct mechanisms. EMBO J. 1999; 18:188-97.
  • [29]Went P, Agostinelli C, Gallamini A, Piccaluga PP, Ascani S, Sabattini E, Bacci F, Falini B, Motta T, Paulli M, Artusi T, Piccioli M, Zinzani PL, Pileri SA. Marker expression in peripheral T-cell lymphoma: a proposed clinical-pathologic prognostic score. J Clin Oncol. 2006; 24:2472-9.
  文献评价指标  
  下载次数:60次 浏览次数:10次