期刊论文详细信息
Cancer Cell International
Ribonucleic acid (RNA) biosynthesis in human cancer
Omar S Hajjawi1 
[1] Department of Biology, Arab American University, Jenin, Israeli Occupied Territories of Palestine
关键词: Drug resistance;    Signal Transducer and Activator of Transcription-STAT;    Antineoplastic agents;    Genometastasis;    Carcinogenesis;    Aptamers;    Telomerase RNA;    Ribosomal RNA;    Polyadenylation;    Polymerases;   
Others  :  1138475
DOI  :  10.1186/s12935-015-0167-3
 received in 2014-11-17, accepted in 2015-01-20,  发布年份 2015
PDF
【 摘 要 】

In many respects, the most remarkable chemical substances within the genome of eukaryotic cells are remarkable proteins which are the critical structural and functional units of living cells. The specifications for everything that goes in the cell are natural digital-to-digital decoding process in an archive sequence by deoxyribonucleic acid (DNA) and an articulate construction by ribonucleic acid (RNA). The products of DNA transcription are long polymers of ribonucleotides rather than deoxyribonucleotides and are termed ribonucleic acids. Certain deoxyribonucleotide sequences, or genes, give rise to transfer RNA (tRNA) and other ribosomal RNA (rRNA) when transcribed. The ribonucleotide sequences fold extensively and rRNA is associated with specific proteins to yield the essential cell components, ribosomes. Transcription of other special sequences yields messenger RNAs (mRNAs) that contain ribonucleotide sequences that will be ultimately translated into new types of amino acid sequences of functional cellular protein molecules. This switch to a different variety of cellular molecular sequences is complex, but each sequence of the three ribonucleotides specifies the insertion of one particular amino acid into the polypeptide chain under production. Whilst mRNA is considered the vehicle by which genetic information is transmitted from the genome and allocated in the appropriate cytoplasmic sites for translation into protein via cap-dependent mechanism, the actual translation depends also on the presence of other so-called household and luxury protein molecules. Recent evidence suggests RNA species are required at initiation, because treatment of cells with antibiotics or drugs that inhibit RNA synthesis cause a decrease in protein synthesis. The rRNA is necessary as a structural constituent of the ribosomes upon which translation takes place, whereas tRNA is necessary as an adaptor in amino acid activation and elongation protein chains to ribosomes. In this article, we review malignant tumor, with stem like properties, and recent technical advances into the phenomenon of micro-particles and micro-vesicles containing cell-free nucleic acids that circulate plasma. New areas of research have been opened into screening tumor telomerase progression, prognosis of aptamers targeting cell surface, monitoring the efficacy of anticancer therapies, oncogenic transformation of host cell, and RNA polymerases role in the cell cycle progression and differentiation.

【 授权许可】

   
2015 Hajjawi; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150320040843467.pdf 901KB PDF download
Figure 2. 55KB Image download
Figure 1. 61KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Murgatroyd C: The power of the gene: the origin and impact of genetic disorder. Nova Science Publishers, Inc., New York, NY; 2011.
  • [2]Dahm R: Discovering DNA: Friedrich Miescher and the early years of nucleic acids research. Hum Genet 2008, 122(6):565-81.
  • [3]Lorincz A: Nucleic acid testing for human disease. Taylor & Francis Group, LLC, New York, NY; 2006.
  • [4]Weaver JR, Susiarjo M, Bartolomei MS: Imprinting and epigenetic changes in the early embryo. Mamm Genome 2009, 20(9–10):532-43.
  • [5]Reik W, Dean W, Walter J: Epigenetic reprogramming in mammalian delopment. Science 2001, 293(5532):1089-93.
  • [6]Aplin JD: Developmental cell biology of human villous trophoblast: current research problems. Int J Dev Biol 2010, 54:323-9.
  • [7]Haberle V, Li N, Hadzhiev Y, Plessy C, Previti C, Nepal C, et al.: Two independent transcription initiation codes overlap on vertebrate core promoters. Nature 2014, 507:381-5.
  • [8]Miller SL, Urey HC: Organic compound synthesis on the primitive earth. Science 1959, 130(3370):245-51.
  • [9]Millette RL, Trotter CD: Initiation and release of RNA by DNA-dependent RNA polymerase. Proc Natl Acad Sci U S A 1970, 66(3):701-8.
  • [10]Hajjawi O: Metal transport across human cell membranes. Eur Scientif J 2014, 10(6):252-70.
  • [11]Lazcano A, Bada JL: The 1953 Stanley L. Miller experiment: fifty years of prebiotic organic chemistry. Origins Life Evol Biospheres 2004, 33(3):235-42.
  • [12]Campbell MK, Farrell SO: Biochemistry. 5th edition. Thomson Learning, Inc, Belmont, CA; 2006.
  • [13]Crick FHC, Barnett L, Brenner S, Watts-Tobin RJ: General nature of the genetic code for proteins. Nature 1961, 192:1227-32.
  • [14]Berg JM, Tymoczko JL, Stryer L: Biochemistry. 5th edition. WH Freeman and Company, New York, NY; 2002.
  • [15]Yasser M, Shaikh R, Chilakapati MK, Teni T: Raman spectroscopic study of radioresistant oral cancer sublines established by fractionated Ionizing radiation. PLoS One 2014, 9(5):e97777. doi: 10.1371/journal.pone.0097777
  • [16]Koonin EV, Novzhilov AS: Origin and evolution of the genetic code the universal enigma. Int Union Biochem Mol Biol Life 2009, 61(2):99-111.
  • [17]Dobson CM: The nature and significance of protein folding. In Mechanisms of protein folding. 2nd edition. Edited by Pain RH. Oxford University Press, New York, NY; 2000.
  • [18]Nissen P, Hansen J, Ban N, Moore PB, Steitz TA: The structural basis of ribosome activity in peptide bond synthesis. Science 2000, 289(5481):920-30.
  • [19]Dever TE: Molecular biology: a new start for protein synthesis. Science 2012, 336(6089):1645-6.
  • [20]Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, et al.: Molecular cell biology. 5th edition. WH Freeman and Company, New York, NY; 2004.
  • [21]Joyce GF: RNA evolution and the origins of life. Nature 1989, 338(6212):217-24.
  • [22]Frankel AD, Young JAT: HIV-1: fifteen proteins and an RNA. Annu Rev Plant Physiol Plant Mol Biol 1998, 67:1-25.
  • [23]Vogel C, Marcotte EM: Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nature Rev Genet 2012, 3:227-32.
  • [24]Fletcher G, Mason S, Terrett J, Solviev M: Self-assembly of proteins and their nucleic acids. J Nanobiotech 2003, 1(1):1.
  • [25]Kuwahara M, Li Y, Rozners E, Murakami H. Artificially created nucleic acids and peptide/protein in chemical biology. J Nucleic Acids. 2013;e219263. doi:10.1155/2013/219263.
  • [26]Cramer P, Armache KJ, Baumli S, Benkert S, Brueckner F, Buchen C, et al.: Structure of eukaryotic RNA polymerases. Annu Rev Biophys 2008, 37:337-52.
  • [27]Grummt I: Regulation of mammalian ribosomal gene transcription by RNA polymerase I. Prog Nucleic Acid Res Mol Biol 1999, 62:109-54.
  • [28]Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al.: MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004, 23(20):4051-60.
  • [29]Willis IM: RNA polymerase III: genes, factors and transcriptional specificity. Eur J Biochem 1993, 212(1):1-11.
  • [30]Autexier C, Lue NF: The structure and function of telomerase reverse transcriptase. Annu Rev Plant Physiol Plant Mol Biol 2006, 75:493-517.
  • [31]Cramer P, Bushnell DA, Kornberg RD: Structural basis of transcription: RNA polymerase II at 2.8 ångstrom resolution. Science 2001, 292:1863-76.
  • [32]Bywater MJ, Pearson RB, McArthur GA, Hannan RD: Dysregulation of the basal RNA polymerase transcription apparatus in cancer. Nat Rev Cancer 2013, 13:299-314.
  • [33]Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB: Proliferating cells express mRNAs with shortened 3' untranslated regions and fewer microRNA target sites. Science 2008, 320(5883):1643-7.
  • [34]Welsch WF, Lieber M: Ground water pollution from industrial waste. Sewage Industrial Wastes 1955, 27(9):1065-72.
  • [35]Jia G, Fu Y, Zhao X, Dia Q, Zheng G, Yang Y, et al.: N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nature Chem Biol 2011, 7(12):885-7.
  • [36]Loos RJF, Yeo GSH: The bigger picture of FTO-the first GWAS-identified obesity gene. Nat Rev Endocrinol 2014, 10:51-61.
  • [37]Watanabe T, Miura T, Degawa Y, Fujita Y, Inoue M, Kawaguchi M, et al.: Comparison of lung cancer cell lines representing four histopathological subtypes with gene expression profiling using quantitative real-time PCR. Cancer Cell Int 2010, 10(2):e2867. doi: 10.1186/1475-2867-10-2
  • [38]Allen FW: The biochemistry of the nucleic acids purines and pyrimidines. Annu Rev Plant Physiol Plant Mol Biol 1941, 10:221-44.
  • [39]Gott JM, Emeson RB: Functions and mechanisms of RNA editing. Ann Rev Genet 2000, 34:499-531.
  • [40]Garrett RH, Grisham CM: Biochemistry. 4th edition. Brooks/Cole, Cengage Learning, Boston, MA; 2010.
  • [41]Ugozzoli L, Wallace RB: Application of an allele-specific polymerase chain reaction to the direct determination of ABO blood group genotypes. Genomics 1992, 12(4):670-4.
  • [42]Tsurugi K, Oqata K: Effects of cell sap, ATP, and RNA synthesis on the transfer of ribosomal proteins into nuclei and nucleoli in a rat liver cell-free system. Eur J Biochem 1984, 145(1):83-9.
  • [43]Henras AK, Soudet J, Gérus M, Lebaron S, Caizerques-Ferrer M, Mougin A, et al.: The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell Mol Life Sci 2008, 65(15):2234-59.
  • [44]Henriette MK, Mochizuki K: Non-coding RNA: a bridge between Small RNA and DNA. RNA Biol 2009, 6(2):138-40.
  • [45]Geiduschek EP, Haselkorn R: Messenger RNA. Annu Rev Plant Physiol Plant Mol Biol 1969, 38:647-76.
  • [46]Gregory S, Barlow KF, McLay KE, Kaul R, Swarbreck D, Dunham A, et al.: The DNA sequence and biological annotation of human chromosome 1. Nature 2006, 441(7091):315-21.
  • [47]Clancy S: Chemical structure of RNA. Nat Educ 2008, 7(1):60-70. Retrieved October 3, 2010, from http://www.nature.com/scitable/topicpage/Chemical-Structure-of-RNA-348
  • [48]Hernández G, Altmann M, Lasko P: Origins and evolution of the mechanisms regulating translation initiation in eukaryotes. Trends Biochem Sci 2010, 35(2):63-73.
  • [49]Brenner S, Jacob F, Meselson M: An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature 1961, 190:576-81.
  • [50]Pattabiraman DR, Winberg RA: Tackling the cancer stem cells-what challenges do they pose? Nat Rev Drug Discov 2014, 13:497-512.
  • [51]Nalwa HS, Webster T: Cancer nanotechnology- a nanomaterial for cancer diagnosis and therapy. American Scientific Publishers, Valencia, CA; 2006.
  • [52]Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jeffrey SR: Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell 2012, 149(7):1635-46.
  • [53]Waddington CH: Developmental mechanics of chick and duck embryos. Nature 1930, 125:924-5.
  • [54]Ralston A, Shaw K: Gene expression regulates cell differentiation. Nat Educ 2008, 1(1):127-31.
  • [55]Giri P, Kumar GS: Molecular aspects of small molecules-poly (A) interaction: an approach to RNA based drug design. Curr Med Chem 2009, 16(8):965-87.
  • [56]Lianoglou S, Garg V, Yang JL, Leslie CS, Mayr C: Ubiquitously transcribed genes use alternative polyadenylation to achieve tissue-specific expression. Genes Dev 2013, 27:2380-96.
  • [57]Danckwardt S, Hentz W, Kulozik AE: 3' end mRNA processing: molecular mechanisms and implications for health and disease. EMBO Life 2008, 27(3):482-98.
  • [58]Lin Y, Ozsolak F, Kim SW, Arango-Argoty G, Liu TT, Tenenbaum SA, et al.: An in-depth map of polyadenylation sites in cancer. Nucleic Acids Res 2012, 40(17):8460-71.
  • [59]Han T, Kim JK: Giving glioblastoma growth by alternative polyadenylation. Cell Res 2014, 24:1023-4.
  • [60]Scherer WF, Syverton JT, Gey GO, Syverton G: Studies on the propagation in the vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cell (strain HeLa) derived from an epidermoid carcinoma of the cervix. J Exp Med 1953, 97(5):695-710.
  • [61]Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, et al.: Measurement of protein using bicinchoninic acid. Biogeosciences 1985, 150:76-85.
  • [62]Tinoco I, Bustamante C: How RNA folds. J Mol Biol 1999, 293(2):271-81.
  • [63]Lubas M, Christensen MS, Kristiansen MS, Domanski M, Falkenby LG, Lykk-Andersen S, et al.: Intraction profiling identities the human nuclear exosome targeting complex. Mol Cell 2011, 43(4):624-37.
  • [64]Meijer HA, Bushell M, Hill K, Gant TW, Willis AE, Jones P, et al.: A novel method for poly (A) fractionation reveals a large population of mRNAs with a short poly (A) tail in mammalian cells. Nucleic Acids Res 2007, 35(19):e132. doi:10.1093/nar/gkm830First published
  • [65]Tian B, Hu J, Zhang H, Lutz CS: A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res 2005, 33(1):201-12.
  • [66]Mukherjee S: The emperor of All maladies: a biography of cancer. Simon & Schuster, Inc., New York, NY; 2010.
  • [67]Xiao YL, Kash JC, Taubenberger JK: High-throughput RNA sequencing of a formalin-fixed paraffin-embedded autopsy lung tissue sample from the 1918 influenza pandemic. J Pathol 2013, 229(4):535-45.
  • [68]Tan KH: Environmental soil science. Marcel Dekker, Inc., New York, NY; 1995.
  • [69]Rosenberg LE: DNA and other strands: the making of human geneticist. Annu Rev Genome 2014, 15:1-26.
  • [70]Friedman RC, Farh KK, Burge CB, Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009, 19:92-105.
  • [71]Houzet L, Jeang KT: MicroRNAs and human retroviruses. Biochim Biophys Acta 2011, 1809(11–12):686-93.
  • [72]Magbool R, Hussain MU: MicroRNAs and human disease: diagnostic and therapeutic potential. Cell Tissue Res 2014, 358(1):1-15.
  • [73]Lukiw WJ: NF-KB- regulated micro RNAs (miRNAs) in primary human brain cells. Exp Neurol 2012, 235(2):484-90.
  • [74]Morris AR, Bos A, Diosdado B, Rooijers K, Elkon R, Bolijn AS, et al.: Alternative cleavage and polyadenylation during colorectal cancer development. Clin Cancer Res 2012, 18(19):5256-66.
  • [75]Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, et al.: TRBP recruits the Dicer complex to Ago 2 for microRNA processing and gene silencing. Nature 2005, 436:740-4.
  • [76]Lau PW, Potter CS, Carragher B, MacRae IJ: Structure of human Dicer-TRBP complex by electron microscopy. Structure 2009, 17(10):1326-32.
  • [77]Duraiswamy J, Freeman GJ, Coukos G: Therapeutic PD-1 pathway blockade augments with other modalities of immunotherapy T-cell function to prevent immune decline in ovarian cancer. Cancer Res 2013, 73(23):6900-69012.
  • [78]Casciano I, Di Vinci A, Banelli B, Brigati C, Forlani A, Allemanni G, et al.: Circulating tumer nucleic acids: perspective in breast cancer. Breast Care (Basel) 2010, 5(2):75-80.
  • [79]Seguin L, Kato S, Franovic A, Camargo MF, Lesperance J, Elliott KC, et al.: An integrin β3–KRAS–RalB complex drives tumour stemness and resistance to EGFR inhibition. Nat Cell Biol 2014, 16:457-68.
  • [80]Wang X, Lu X, Gomez A, Hon GC, Yue Y, Han D, et al.: N6-methyladenosine-dependent regulation of messenger RNA stability. Bature 2014, 2505(7481):117-20.
  • [81]Revyakin A, Zhang Z, Coleman RA, Li Y, Inouye C, Lucas JK, et al.: Transcription initiation by human RNA polymerase II visualized at single-molecule resolution. Genes Dev 2012, 26(15):1691-702.
  • [82]Weis BL, Schleiff E, Zerges W: Protein targeting to subcellular organelles via mRNA localization. Biochim Biophys Acta Mol Cell Res 2013, 1833(2):260-73.
  • [83]Kopelvich L, Crowell JA, Fay JR: The Epigenome as a target for cancer chemoprevention. J Natl Cancer Inst 1995, 5(23):1747-57.
  • [84]Bonasio R, Tu S, Reinberg D: Molecular signals of epigenetic states. Science 2010, 330(6004):612-6.
  • [85]Dawson MA, Kouzarides T: Cancer epigenetics: from mechanism to therapy. Cell 2012, 150(1):12-27.
  • [86]Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, et al.: Drug resistance in cancer: an overview. Cancer 2014, 6(3):e1769. doi:10.3390/cancers603176
  • [87]Zemora G, Waldsich C: RNA folding in living cells. RNA Biol 2010, 7(6):634-41.
  • [88]Ferré-D'Amaré AR, Doudna JA: RNA folds: insights from recent crystal structures. Annu Rev Biophys Biomol Struct 1999, 28:57-73.
  • [89]Tschochner H, Hurt E: Pre-ribosomes on the road from the nucleolus to the cytoplasm. Trends Cell Biol 2003, 13(5):255-63.
  • [90]Schwarzenbach H, Hoon DSB, Pantel K: Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 2011, 11:426-37.
  • [91]Frank DN, Pace NR: Ribonuclease P: unity and diversity in a tRNA processing ribozyme. Annu Rev Biochem 1998, 67:153-80.
  • [92]Higgs PG: RNA secondary structure: physical and computational aspects. Q Rev Biophys 2000, 33(3):199-253.
  • [93]Noble JE, Bailey MJA: Quantitation of protein. Methods Enzymol 2009, 463:73-95.
  • [94]Freeman GJ, Sharpe AH: A new therapeutic strategy for malaria targeting T cells exhaustion. Nat Immunol 2012, 13(2):113-5.
  • [95]Jackson SP, Bartek J: The DNA-damage response in human biology and disease. Nature 2009, 461:1071-8.
  • [96]Möller A, Xie SQ, Hosp F, Lang B, Phatmani HP, James S, et al.: Proteomic analysis of mitotic RNA polymerase II reveals novel interactors and association with proteins dysfunctional in disease. Mol Cell Proteomics 2012, 11(6):e11767. doi:10.1074/mcp.M111.011767
  • [97]Schroeder R, Barta A, Semrad K: Strategies for RNA folding and assembly. Nat Rev Mol Cell Biol 2004, 5:908-19.
  • [98]Sun G, Yan J, Noltner K, Feng J, Li H, Sarkis DA, et al.: SNPs in human miRNA genes affect biogenesis and function. RNA 2009, 15(9):1640-51.
  • [99]White RJ: RNA polymerases I and III, growth control and cancer. Nat Rev Mol Cell Biol 2005, 6:69-78.
  • [100]Tanaka K, Nishioka J, Kato K, Nakamura A, Mouri T, Miki C, et al.: Mitotic checkpoint protein hsMAD2 as a marker predicting liver metastasis of human gastric cancers. Jpn J Cancer Res 2001, 92:952-8.
  • [101]Hogan CM: Water pollution. In Encylopedia of earth topic. Edited by McGinley M. Cleveland National Council on Science and Environment, Washington, DC; 2010.
  • [102]Verma S, Eckstein F: Modified oligonucleotides: synthesis and strategy for users. Annu Rev Biochem 1998, 67:99-134.
  • [103]Miller MD, Marty MA: Impact of environmental chemicals on lung development. Environ Health Perspect 2010, 118(8):1155-64.
  • [104]Katzung BG, Masters SB, Trevor AJ: Basic & clinical pharmacology. 12th edition. McGraw-Hill Medical Division, New York, NY; 2011.
  • [105]Knipe DM, Howley PM: Fields virology. 6th edition. Lippincott Williams and Wilkins, Philadelphia, PA; 2013.
  • [106]Chandrasoma P, Taylor CT: Concise Pathology. 3rd edition. Appleton & Lange, East Norwalk, CT; 2000.
  • [107]Favoni RE, de Cupis A: The role of polypeptide growth factors in human carcinomas: new targets for a novel pharmacological approach. Pharmacol Rev 2000, 52(2):179-206.
  • [108]Holzmann J, Frank P, Löffler E, Bennett K, Gerner C, Rossmanith W: RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell 2008, 135(3):462-74.
  • [109]Willis RA: The spread of tumors in the human body. Butterworth, London; 1952.
  • [110]Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P: Molecular Biology. 4th edition. Garland Science, New York, NY; 2002.
  • [111]Coulie PG, van den Eynde B, der Bruggen P, Boon T: Tumor antigens recognized by T lymphocytes at the core of cancer immunotherapy. Nat Rev Cancer 2014, 14:135-46.
  • [112]Penman S, Vesco C, Penman M: Localization and kinetics of formation of nuclear heterodisperse RNA. cytoplasmic heterodisperse RNA and polyribosome-associated messenger RNA in HeLa cells. J Mol Biol 1968, 34:49-69.
  • [113]Kopnin BP: Targets of oncogenes and tumor supressors: key for understanding basic mechanisms of carcinogenesis. Biochemistry 2000, 65:2-27.
  • [114]Hahn WC, Weinberg RA: Roles of making human tumor cell. New England J Med 2002, 347:1593-603.
  • [115]Chin L, Gray JW: Translating insights from cancer genome into clinical practice. Nature 2008, 452(7187):553-63.
  • [116]Fernandez TS, Fernandez CS, Mencalha AL. Human induced pluripotent stem cells from basic research to potential clinical applications in cancer. BioMed Res Int. 2013; 13. Retrieved October 22, 2014, from http://dx.doi.org/10.1155/2013/430290.
  • [117]Sul JY, Kim TK, Lee JH, Eberwine J: Perspective on cell reprogramming with RNA. Biotechnology 2012, 30(5):243-9.
  • [118]Nelson DL, Cox MM: Lehninger principles of biochemistry. 5th edition. WH Freeman and Company, New York, NY; 2008.
  • [119]Ahmed SI: Lab diagnostics of neoplasia. Sapphiresia, San Francisco, CA; 2009.
  • [120]Hayat MA: Methods of cancer diagnosis, therapy and prognosis. Springer Verlag, New York, NY; 2009.
  • [121]Fadare O, Parkash V: Diagnosis of neoplasia in endometrial biopsies book and online bundle: a pattern-based and algorithmic. Cambridge University Press, Cambridge; 2014.
  • [122]Pisano DJ, Mantus DS: FDA regulatory affairs: a guide for prescription drugs, medical devices and biologics. 2nd edition. Informa Healthcare USA, Inc., New York, NY; 2008.
  • [123]Kim J, Eberwine J: RNA: state of memory and mediator of cellular phenotype. Trends Cell Biol 2010, 20(6):311-8.
  • [124]Slomovic S, Laufer D, Geiger D, Schusfer G: Polyadenylation of ribosomal RNA in human cells. Nucleic Acids Res 2006, 34(10):2966-75.
  • [125]Morita Y, Shibutani T, Nakanishi N, Nishikura K, Iwai S, Kuraoka I: Human endonuclease V is a ribonuclease specific for inosine-containing RNA. Nat Communication 2013, 4:e2273. doi:10.1038/ncomms3273
  • [126]Maldonado E, Drapkin R, Reinberg D: Purification of human RNA polymerase II and general transcription factors. Methods Enzymol 1996, 174:72-100.
  • [127]Montanaro L, Treré D, Derenzini M: The emerging role of RNA polymerase I transcription machinery in human malignancy: a clinical perspective. Onco Targets Ther 2013, 6:909-16.
  • [128]Haurie V, Durrieu-Caillard S, Dumay-Odelot H, Da Silva D, Rey C, Prochazkova M, et al.: Two isoforms of human RNA polymerase III with specific functions in cell growth and transformation. Proc Natl Acad Sci 2010, 107(9):4176-81.
  • [129]Alla RK, Cairns BR: RNA polymerase III transcriptomes in human embryonic stem cells and induced pluripotent stem cells, and relationships with pluripotency transcription factors. PLoS One 2014, 9(1):e85648. doi:10.1371/journal.pone.0085648
  • [130]Jacob ST, Rose KM: RNA polymerases and Poly (A) polymerase from neoplastic tissues and cells. Methods Cancer Res 1978, 14:191-241.
  • [131]Schneider DA: RNA polymerase I activity is regulated at multiple steps in the transcription cycle: recent insights into factors that influence transcription elongation. Gene 2012, 493(2):176-84.
  • [132]Thomadaki H, Tsiapalis CM, Scorilas A: Polyadenylate polymerase modulation in human epithelioid cervix and breast cancer cell lines, treated with etoposide or cordycepin, follow cell cycle rather than apoptosis. Biol Chem 2005, 386(5):471-80.
  • [133]Waterberg JH: The lowery method for protein quantitation. In The protein protocols handbook. 2nd edition. Edited by Walker JM. Humana Press Inc, Totawa, NJ; 2002.
  • [134]Yallow RS, Berson SA: Immunoassay of endogenous plasma insulin in man. J Clin Investigation 1960, 39:1157-75.
  • [135]Hedegaard J, Thorsen K, Lund MK, Hein AMK, Hamilton-Dutoit SJ, Vang S, et al.: Next-generation sequencing of RNA and DNA isolated from paired fresh-frozen and formalin-fixed paraffin-embedded samples of human cancer and normal tissue. PLoS One 2014, 9(5):e98187. doi:10.1371/journal.pone.0098187
  • [136]Cillo C, Schreyer M, Odartchenko N, Carrel S: Histological analysis of human tumour cell colonies grown in methylcellulose cultures. Br J Cancer 1984, 49:653-7.
  • [137]Panet A, Baltimore D, Hanafusa T: Quantitative of avian RNA tumor virus transcriptase by radioimmunoassay. J Virol 1975, 16(1):146-52.
  • [138]Youngman EM, Brunelle JL, Kochaniak AB, Green R: The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release. Cell 2004, 117(5):589-99.
  • [139]Stella GM, Senetta R, Cassenti A, Margherita R, Cassoni P: Cancers of unknown primary origin: current perspective and future therapeutic strategies. J Translational Med 2012, 10(12):e5876. doi:10:1186/1479-5876-10-12
  • [140]Perry RP: Processing of RNA. Annu Rev Biochem 1976, 45:605-29.
  • [141]Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 1951, 193:265-75.
  • [142]Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 1976, 72:248-54.
  • [143]Berges JA, Fisher AE, Harrison PJ: Comparison of Lowry, Bradfor and Smith protein assays using different protein standards and protein isolated from the marine diatom Thalassiosira pseudonana. Mar Biol 1993, 115:187-93.
  • [144]Oshima Y, Shinzawa H, Takenaka T, Furihata C, Sata H: Discrimination analysis of human lung cancer cells associated with histological type and malignancy using Raman spectroscopy. J Biomed Opt 2010, 15(1):e3316296. doi:10.1117/1.3316296
  • [145]Watson JD, Crick FHC: Molecular structure of nucleic acid: a structure of deoxyribosenucleic acid. Nature 1953, 171:737-8.
  • [146]Greenwood FC, Hunter WM, Glover JS: The preparation of 125I-labelled human growth hormones of high specific radioactivity. Biochem J 1963, 89:114-23.
  • [147]Brailly S, Lorenzo F, Jolivet A, Logeat F, Pallud C, Milgrom E: Radioimmunoassay of progesterone receptor in human tissues: application to breast cancer. J Endocrinol 1988, 116(3):427-34.
  • [148]Akiyama F, Horii R: Therapeutic strategies for breast cancer based on histological type. Breast Cancer 2009, 16:168-72.
  • [149]Straus H: Max Gerson: healing the hopeless. Quarry Books, Kingston, Ontario; 2001.
  • [150]Stetler DA, Rose KM, Wenger ME, Berlin CM, Jacob ST: Antibodies to distinct polypeptides of RNA polymerase I in sera from patients with rheumatic autoimmune disease. Proc Natl Acad Sci U S A 1982, 79:7499-503.
  • [151]Guialis A, Beaty BG, Ingles CJ, Crerar MM: Regulation of RNA polymerase II activity in alpha-amanitin resistant CHO hybrid cells. Cell 1977, 10:53-60.
  • [152]Borchert GM, Lanier W, Davidson BL: RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 2006, 13(12):1097-101.
  • [153]Baldwin GS, Zhang QX: Measurement of gastrin and transforming growth factor α messenger RNA levels in colonic carcinoma cell lines by quantitative polymerase chain reaction. J Cancer Res 1992, 52:2261-7.
  • [154]Parsons GG, Spencer CA: Mitotic repression of RNA polymerase II transcription is accompanied by release of transcription elongation complexes. Mol Cell Biol 1997, 17(10):5791-802.
  • [155]Albert B, Leger-Solvestre I, Normand C, Ostermaier MK, Perez-Fernandez J, Panov KI, et al.: RNA polymerase I- specific subunits promote polymerase clustering to enhance the rRNA gene transcription cycle. J Cell Biol 2011, 192(2):277-93.
  • [156]Hossenlopp P, Wells D, Chambon P: Animal DNA-dependendent RNA polymerases: partial purification and properties of three classes of RNA polymerases from uninfected and adenovirus-infected HeLa cells. Eur J Biochem 1975, 58:237-51.
  • [157]Gibb EA, Brown C, Lam WL: The functional of long non-coding RNA in human carcinomas. Molec Cancer 2011, 10(38):1-17.
  • [158]Bonnart C, Gérus M, Hoareau-Aviella C, Kiss T, Caizergues-Ferrer M, Henry Y, et al.: Mammalian HCA66 protein is required for both ribosome synthesis and centriole duplication. Nucl Acids Res 2012, 40(13):6270-89.
  • [159]Hochstatter J, Hölzel M, Rohmoser M, Schermelleh L, Leonhardt H, Keouph R, et al.: Myb-binding protein 1a (Mybbp1a) regulates levels and processing of pre-ribosomal RNA. J Biol Chem 2012, 287(29):24385-77.
  • [160]Giri P, Kumar GS: Isoquinoline alkaloids and their binding with polyadenylic acid: potential basis of therapeutic action. Mini Rev Med Chemist 2010, 10(7):568-77.
  • [161]Hossain M, Kabir A, Kumar GS: Binding of the anticancer alkaloid sanguinarine with tRNAphe: spectroscopic and calorimetric studies. J Biomole Struc Dynamics 2012, 30(2):223-34.
  • [162]Kumar GS: RNA targeting by small molecules: binding of protoberberine. benzophenanthridine Aristolochia alkaloids various RNA structures. J Bioscience 2012, 37:539-52.
  文献评价指标  
  下载次数:8次 浏览次数:8次