| Journal of Neuroinflammation | |
| DQB1*0602 rather than DRB1*1501 confers susceptibility to multiple sclerosis-like disease induced by proteolipid protein (PLP) | |
| Avraham Ben-Nun1  Hans Lassmann4  Chella S David5  Daniel M Altmann3  Nathali Kaushansky2  | |
| [1] Department of Immunology, The Weizmann Institute of Science, P.O. Box 26 Rehovot 76000, Israel;Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel;Human Disease Immunogenetics Group, Section of Infectious Diseases and Immunity, Department of Medicine, Imperial College, Hammersmith Hospital, London, UK;Center for Brain Research, Department of Neuroimmunology, Medical University of Vienna, Vienna, Austria;Department of Immunology, Mayo Clinic, Rochester, MN, USA | |
| 关键词: HLA-Tg mice; MHC; T Cells; Neuroimmunology; Antigens/Peptides/Epitopes; EAE/MS; | |
| Others : 1212810 DOI : 10.1186/1742-2094-9-29 |
|
| received in 2011-11-28, accepted in 2012-02-08, 发布年份 2012 | |
PDF
|
|
【 摘 要 】
Background
Multiple sclerosis (MS) is associated with pathogenic autoimmunity primarily focused on major CNS-myelin target antigens including myelin basic protein (MBP), proteolipidprotein (PLP), myelin oligodendrocyte protein (MOG). MS is a complex trait whereby the HLA genes, particularly class-II genes of HLA-DR15 haplotype, dominate the genetic contribution to disease-risk. Due to strong linkage disequilibrium in HLA-II region, it has been hard to establish precisely whether the functionally relevant effect derives from the DRB1*1501, DQA1*0102-DQB1*0602, or DRB5*0101 loci of HLA-DR15 haplotype, their combinations, or their epistatic interactions. Nevertheless, most genetic studies have indicated DRB1*1501 as a primary risk factor in MS. Here, we used 'HLA-humanized' mice to discern the potential relative contribution of DRB1*1501 and DQB1*0602 alleles to susceptibility to "humanized" MS-like disease induced by PLP, one of the most prominent and encephalitogenic target-antigens implicated in human MS.
Methods
The HLA-DRB1*1501- and HLA-DQB1*0602-Tg mice (MHC-II-/-), and control non-HLA-DR15-relevant-Tg mice were immunized with a set of overlapping PLP peptides or with recombinant soluble PLP for induction of "humanized" MS-like disease, as well as for ex-vivo analysis of immunogenic/immunodominant HLA-restricted T-cell epitopes and associated cytokine secretion profile.
Results
PLP autoimmunity in both HLA-DR15-Tg mice was focused on 139-151 and 175-194 epitopes. Strikingly, however, the HLA-DRB1*1501-transgenics were refractory to disease induction by any of the overlapping PLP peptides, while HLA-DQB1*0602 transgenics were susceptible to disease induction by PLP139-151 and PLP175-194 peptides. Although both transgenics responded to both peptides, the PLP139-151- and PLP175-194-reactive T-cells were directed to Th1/Th17 phenotype in DQB1*0602-Tg mice and towards Th2 in DRB1*1501-Tg mice.
Conclusions
While genome studies map a strong MS susceptibility effect to the region of DRB1*1501, our findings offer a rationale for potential involvement of pathogenic DQ6-associated autoimmunity in MS. Moreover, that DQB1*0602, but not DRB1*1501, determines disease-susceptibility to PLP in HLA-transgenics, suggests a potential differential, functional role for DQB1*0602 as a predisposing allele in MS. This, together with previously demonstrated disease-susceptibility to MBP and MOG in DRB1*1501-transgenics, also suggests a differential role for DRB1*1501 and DQB1*0602 depending on target antigen and imply a potential complex 'genotype/target antigen/phenotype' relationship in MS heterogeneity.
【 授权许可】
2012 Kaushansky et al; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150614104613341.pdf | 1720KB | ||
| Figure 4. | 68KB | Image | |
| Figure 5. | 40KB | Image | |
| Figure 4. | 20KB | Image | |
| Figure 3. | 99KB | Image | |
| Figure 2. | 100KB | Image | |
| Figure 1. | 92KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 4.
【 参考文献 】
- [1]de Rosbo NK, Ben-Nun A: T-cell responses to myelin antigens in multiple sclerosis; relevance of the predominant autoimmune reactivity to myelin oligodendrocyte glycoprotein. J Autoimmun 1998, 11:287-299.
- [2]Sospedra M, Martin R: Immunology of multiple sclerosis. Annu Rev Immunol 2005, 23:683-747.
- [3]Kela-Madar N, de Rosbo NK, Ronen A, Mor F, Ben-Nun A: Autoimmune spread to myelin is associated with experimental autoimmune encephalomyelitis induced by a neuronal protein, beta-synuclein. J Neuroimmunol 2009, 208:19-29.
- [4]Huizinga R, Heijmans N, Schubert P, Gschmeissner S, t Hart BA, Herrmann H, Amor S: Immunization with neurofilament light protein induces spastic paresis and axonal degeneration in Biozzi ABH mice. J Neuropathol Exp Neurol 2007, 66:295-304.
- [5]Giovannoni G, Ebers G: Multiple sclerosis: the environment and causation. Curr Opin Neurol 2007, 20:261-268.
- [6]Ramagopalan SV, Dyment DA, Ebers GC: Genetic epidemiology: the use of old and new tools for multiple sclerosis. Trends Neurosci 2008, 31:645-652.
- [7]Sawcer S: The complex genetics of multiple sclerosis: pitfalls and prospects. Brain 2008, 131:3118-3131.
- [8]Oksenberg JR, Barcellos LF, Hauser SL: Genetic aspects of multiple sclerosis. Semin Neurol 1999, 19:281-288.
- [9]Oksenberg JR, Baranzini SE, Sawcer S, Hauser SL: The genetics of multiple sclerosis: SNPs to pathways to pathogenesis. Nat Rev Genet 2008, 9:516-526.
- [10]McElroy JP, Oksenberg JR: Multiple sclerosis genetics. Neurol Clin 2010, 29:219-231.
- [11]Miretti MM, Walsh EC, Ke X, Delgado M, Griffiths M, Hunt S, Morrison J, Whittaker P, Lander ES, Cardon LR, et al.: A high-resolution linkage-disequilibrium map of the human major histocompatibility complex and first generation of tag single-nucleotide polymorphisms. Am J Hum Genet 2005, 76:634-646.
- [12]Ramagopalan SV, Ebers GC: Multiple sclerosis: major histocompatibility complexity and antigen presentation. Genome Med 2009, 1:105. BioMed Central Full Text
- [13]Hauser SL, Oksenberg JR: The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration. Neuron 2006, 52:61-76.
- [14]Oksenberg JR, Baranzini SE: Multiple sclerosis genetics--is the glass half full, or half empty? Nat Rev Neurol 2010, 6:429-437.
- [15]Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L, Dilthey A, Su Z, Freeman C, Hunt SE, et al.: Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 2011, 476:214-219.
- [16]Serjeantson SW, Gao X, Hawkins BR, Higgins DA, Yu YL: Novel HLA-DR2-related haplotypes in Hong Kong Chinese implicate the DQB1*0602 allele in susceptibility to multiple sclerosis. Eur J Immunogenet 1992, 19:11-19.
- [17]Spurkland A, Celius EG, Knutsen I, Beiske A, Thorsby E, Vartdal F: The HLA-DQ(alpha 1*0102, beta 1*0602) heterodimer may confer susceptibility to multiple sclerosis in the absence of the HLA-DR(alpha 1*01, beta 1*1501) heterodimer. Tissue Antigens 1997, 50:15-22.
- [18]Oksenberg JR, Barcellos LF, Cree BA, Baranzini SE, Bugawan TL, Khan O, Lincoln RR, Swerdlin A, Mignot E, Lin L, et al.: Mapping multiple sclerosis susceptibility to the HLA-DR locus in African Americans. Am J Hum Genet 2004, 74:160-167.
- [19]Wucherpfennig KW, Zhang J, Witek C, Matsui M, Modabber Y, Ota K, Hafler DA: Clonal expansion and persistence of human T cells specific for an immunodominant myelin basic protein peptide. J Immunol 1994, 152:5581-5592.
- [20]Martin R, Jaraquemada D, Flerlage M, Richert J, Whitaker J, Long EO, McFarlin DE, McFarland HF: Fine specificity and HLA restriction of myelin basic protein-specific cytotoxic T cell lines from multiple sclerosis patients and healthy individuals. J Immunol 1990, 145:540-548.
- [21]Ota K, Matsui M, Milford EL, Mackin GA, Weiner HL, Hafler DA: T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 1990, 346:183-187.
- [22]Valli A, Sette A, Kappos L, Oseroff C, Sidney J, Miescher G, Hochberger M, Albert ED, Adorini L: Binding of myelin basic protein peptides to human histocompatibility leukocyte antigen class II molecules and their recognition by T cells from multiple sclerosis patients. J Clin Invest 1993, 91:616-628.
- [23]Douek DC, Altmann DM: T-cell apoptosis and differential human leucocyte antigen class II expression in human thymus. Immunology 2000, 99:249-256.
- [24]Altmann DM, Douek DC, Frater AJ, Hetherington CM, Inoko H, Elliott JI: The T cell response of HLA-DR transgenic mice to human myelin basic protein and other antigens in the presence and absence of human CD4. J Exp Med 1995, 181:867-875.
- [25]Mangalam AK, Khare M, Krco C, Rodriguez M, David C: Identification of T cell epitopes on human proteolipid protein and induction of experimental autoimmune encephalomyelitis in HLA class II-transgenic mice. Eur J Immunol 2004, 34:280-290.
- [26]Kawamura K, Yamamura T, Yokoyama K, Chui DH, Fukui Y, Sasazuki T, Inoko H, David CS, Tabira T: Hla-DR2-restricted responses to proteolipid protein 95-116 peptide cause autoimmune encephalitis in transgenic mice. J Clin Invest 2000, 105:977-984.
- [27]Rich C, Link JM, Zamora A, Jacobsen H, Meza-Romero R, Offner H, Jones R, Burrows GG, Fugger L, Vandenbark AA: Myelin oligodendrocyte glycoprotein-35-55 peptide induces severe chronic experimental autoimmune encephalomyelitis in HLA-DR2-transgenic mice. Eur J Immunol 2004, 34:1251-1261.
- [28]Kaushansky N, Altmann DM, Ascough S, David CS, Lassmann H, Ben-Nun A: HLA-DQB1*0602 determines disease susceptibility in a new "humanized" multiple sclerosis model in HLA-DR15 (DRB1*1501;DQB1*0602) transgenic mice. J Immunol 2009, 183:3531-3541.
- [29]Khare M, Mangalam A, Rodriguez M, David CS: HLA DR and DQ interaction in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis in HLA class II transgenic mice. J Neuroimmunol 2005, 169:1-12.
- [30]Mangalam A, Luckey D, Basal E, Behrens M, Rodriguez M, David C: HLA-DQ6 (DQB1*0601)-restricted T cells protect against experimental autoimmune encephalomyelitis in HLA-DR3.DQ6 double-transgenic mice by generating anti-inflammatory IFN-gamma. J Immunol 2008, 180:7747-7756.
- [31]Marrosu MG, Muntoni F, Murru MR, Costa G, Pischedda MP, Pirastu M, Sotgiu S, Rosati G, Cianchetti C: HLA-DQB1 genotype in Sardinian multiple sclerosis: evidence for a key role of DQB1 *0201 and *0302 alleles. Neurology 1992, 42:883-886.
- [32]Greer JM, Csurhes PA, Muller DM, Pender MP: Correlation of blood T cell and antibody reactivity to myelin proteins with HLA type and lesion localization in multiple sclerosis. J Immunol 2008, 180:6402-6410.
- [33]Lock CB, So AK, Welsh KI, Parkes JD, Trowsdale J: MHC class II sequences of an HLA-DR2 narcoleptic. Immunogenetics 1988, 27:449-455.
- [34]Cosgrove D, Gray D, Dierich A, Kaufman J, Lemeur M, Benoist C, Mathis D: Mice lacking MHC class II molecules. Cell 1991, 66:1051-1066.
- [35]Zhong MC, Kerlero de Rosbo N, Ben-Nun A: Multiantigen/multiepitope-directed immune-specific suppression of "complex autoimmune encephalomyelitis" by a novel protein product of a synthetic gene. J Clin Invest 2002, 110:81-90.
- [36]de Rosbo NK, Kaye JF, Eisenstein M, Mendel I, Hoeftberger R, Lassmann H, Milo R, Ben-Nun A: The myelin-associated oligodendrocytic basic protein region MOBP15-36 encompasses the immunodominant major encephalitogenic epitope(s) for SJL/J mice and predicted epitope(s) for multiple sclerosis-associated HLA-DRB1*1501. J Immunol 2004, 173:1426-1435.
- [37]Zhong MC, Cohen L, Meshorer A, Kerlero de Rosbo N, Ben-Nun A: T-cells specific for soluble recombinant oligodendrocyte-specific protein induce severe clinical experimental autoimmune encephalomyelitis in H-2(b) and H-2(s) mice. J Neuroimmunol 2000, 105:39-45.
- [38]Ben-Nun A, Rosbo N, Kaushansky N, Eisenstein M, Cohen L, Kaye JF, Mendel I: Anatomy of T cell autoimmunity to myelin oligodendrocyte glycoprotein (MOG): prime role of MOG44F in selection and control of MOG-reactive T cells in H-2b mice. Eur J Immunol 2006, 36:478-493.
- [39]Kaushansky N, Zilkha-Falb R, Hemo R, Lassman H, Eisenstein M, Sas A, Ben-Nun A: Pathogenic T cells in MOBP-induced murine EAE are predominantly focused to recognition of MOBP21F and MOBP27P epitopic residues. Eur J Immunol 2007, 37:3281-3292.
- [40]Marsh SG, Bodmer JG: HLA class II nucleotide sequences, 1992. Hum Immunol 1992, 35:1-17.
- [41]Ong B, Willcox N, Wordsworth P, Beeson D, Vincent A, Altmann D, Lanchbury JS, Harcourt GC, Bell JI, Newsom-Davis J: Critical role for the Val/Gly86 HLA-DR beta dimorphism in autoantigen presentation to human T cells. Proc Natl Acad Sci USA 1991, 88:7343-7347.
- [42]Stromnes IM, Cerretti LM, Liggitt D, Harris RA, Goverman JM: Differential regulation of central nervous system autoimmunity by T(H)1 and T(H)17 cells. Nat Med 2008, 14:337-342.
- [43]Tuohy VK: Peptide determinants of myelin proteolipid protein (PLP) in autoimmune demyelinating disease: a review. Neurochem Res 1994, 19:935-944.
- [44]Alves-Leon SV, Papais-Alvarenga R, Magalhaes M, Alvarenga M, Thuler LC, Fernandez y Fernandez O: Ethnicity-dependent association of HLA DRB1-DQA1-DQB1 alleles in Brazilian multiple sclerosis patients. Acta Neurol Scand 2007, 115:306-311.
- [45]Lincoln MR, Ramagopalan SV, Chao MJ, Herrera BM, Deluca GC, Orton SM, Dyment DA, Sadovnick AD, Ebers GC: Epistasis among HLA-DRB1, HLA-DQA1, and HLA-DQB1 loci determines multiple sclerosis susceptibility. Proc Natl Acad Sci USA 2009, 106:7542-7547.
- [46]Amirzargar A, Mytilineos J, Yousefipour A, Farjadian S, Scherer S, Opelz G, Ghaderi A: HLA class II (DRB1, DQA1 and DQB1) associated genetic susceptibility in Iranian multiple sclerosis (MS) patients. Eur J Immunogenet 1998, 25:297-301.
- [47]Waldner H, Whitters MJ, Sobel RA, Collins M, Kuchroo VK: Fulminant spontaneous autoimmunity of the central nervous system in mice transgenic for the myelin proteolipid protein-specific T cell receptor. Proc Natl Acad Sci USA 2000, 97:3412-3417.
- [48]Goverman J, Woods A, Larson L, Weiner LP, Hood L, Zaller DM: Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell 1993, 72:551-560.
- [49]Whitham RH, Bourdette DN, Hashim GA, Herndon RM, Ilg RC, Vandenbark AA, Offner H: Lymphocytes from SJL/J mice immunized with spinal cord respond selectively to a peptide of proteolipid protein and transfer relapsing demyelinating experimental autoimmune encephalomyelitis. J Immunol 1991, 146:101-107.
- [50]Bielekova B, Sung MH, Kadom N, Simon R, McFarland H, Martin R: Expansion and functional relevance of high-avidity myelin-specific CD4+ T cells in multiple sclerosis. J Immunol 2004, 172:3893-3904.
- [51]Bielekova B, Goodwin B, Richert N, Cortese I, Kondo T, Afshar G, Gran B, Eaton J, Antel J, Frank JA, et al.: Encephalitogenic potential of the myelin basic protein peptide (amino acids 83-99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat Med 2000, 6:1167-1175.
- [52]Erlich H, Valdes AM, Noble J, Carlson JA, Varney M, Concannon P, Mychaleckyj JC, Todd JA, Bonella P, Fear AL, et al.: HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk: analysis of the type 1 diabetes genetics consortium families. Diabetes 2008, 57:1084-1092.
- [53]Tjon JM, van Bergen J, Koning F: Celiac disease: how complicated can it get? Immunogenetics 2010, 62:641-651.
- [54]Vandenbark AA, Chou YK, Whitham R, Mass M, Buenafe A, Liefeld D, Kavanagh D, Cooper S, Hashim GA, Offner H: Treatment of multiple sclerosis with T-cell receptor peptides: results of a double-blind pilot trial. Nat Med 1996, 2:1109-1115.
- [55]Steinman L: Antigen-specific therapy of multiple sclerosis: the long-sought magic bullet. Neurotherapeutics 2007, 4:661-665.
- [56]Muraro PA, Wandinger KP, Bielekova B, Gran B, Marques A, Utz U, McFarland HF, Jacobson S, Martin R: Molecular tracking of antigen-specific T cell clones in neurological immune-mediated disorders. Brain 2003, 126:20-31.
PDF