Cancer Cell International | |
Epigenetic alteration by DNA-demethylating treatment restores apoptotic response to glucocorticoids in dexamethasone-resistant human malignant lymphoid cells | |
E Brad Thompson4  Wayne V Vedeckis2  Yuriy Fofanov1  William R Widger4  Lawrence Sowers1  Jiabin Yan1  Jason R Schwartz3  Meenakshi Sharma4  Georgiy Golovko1  Chuandong Geng2  Aaron L Miller5  | |
[1] Department of Pharmacology & Toxicology, and Sealy Center for Structural Biology & Molecular Biophysics, Univ. of Texas Medical Branch, Galveston, TX, USA;Department of Biochemistry & Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, LA CG present address, Depts. of Medicine and of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA;Present address St. Jude Children’s Hospital, Memphis, TN, USA;Department of Biology & Biochemistry, Centers for Biomedical & Environmental Genomics and/or Nuclear Receptors & Cell Signaling, University of Houston, Houston, TX, USA;Department of Biochemistry & Molecular Biology, (ALM present address, Department. of Pediatrics, & Assay Devel. Service Division Galveston National Lab.), University of Texas Medical Branch, Galveston, TX, USA | |
关键词: RPMI 8226; Molt-4; CEM; High throughput sequencing; Myeloma; Lymphoid; Leukemia; Phosphorylation; p38; Methylation; Glucocorticoid receptor; Glucocorticoid; Epigenetic; Dexamethasone; Apoptosis; 5 Aza-2’ deoxycytidine; | |
Others : 792113 DOI : 10.1186/1475-2867-14-35 |
|
received in 2013-12-23, accepted in 2014-04-01, 发布年份 2014 | |
【 摘 要 】
Background
Glucocorticoids (GCs) are often included in the therapy of lymphoid malignancies because they kill several types of malignant lymphoid cells. GCs activate the glucocorticoid receptor (GR), to regulate a complex genetic network, culminating in apoptosis. Normal lymphoblasts and many lymphoid malignancies are sensitive to GC-driven apoptosis. Resistance to GCs can be a significant clinical problem, however, and correlates with resistance to several other major chemotherapeutic agents.
Methods
We analyzed the effect of treatment with the cytosine analogue 5 aza-2’ deoxycytidine (AZA) on GC resistance in two acute lymphoblastic leukemia (T or pre-T ALL) cell lines- CEM and Molt-4- and a (B-cell) myeloma cell line, RPMI 8226. Methods employed included tissue culture, flow cytometry, and assays for clonogenicity, cytosine extension, immunochemical identification of proteins, and gene transactivation. High throughput DNA sequencing was used to confirm DNA methylation status.
Conclusions
Treatment of these cells with AZA resulted in altered DNA methylation and restored GC-evoked apoptosis in all 3 cell lines. In CEM cells the altered epigenetic state resulted in site-specific phosphorylation of the GR, increased GR potency, and GC-driven induction of the GR from promoters that lie in CpG islands. In RPMI 8226 cells, expression of relevant coregulators of GR function was altered. Activation of p38 mitogen-activated protein kinase (MAPK), which is central to a feed-forward mechanism of site-specific GR phosphorylation and ultimately, apoptosis, occurred in all 3 cell lines. These data show that in certain malignant hematologic B- and T-cell types, epigenetically controlled GC resistance can be reversed by cell exposure to a compound that causes DNA demethylation. The results encourage studies of application to in vivo systems, looking towards eventual clinical applications.
【 授权许可】
2014 Miller et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140705024230343.pdf | 1589KB | download | |
Figure 8. | 32KB | Image | download |
Figure 7. | 46KB | Image | download |
Figure 6. | 41KB | Image | download |
Figure 5. | 15KB | Image | download |
Figure 4. | 49KB | Image | download |
Figure 3. | 55KB | Image | download |
Figure 2. | 54KB | Image | download |
Figure 1. | 57KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
【 参考文献 】
- [1]Fandy TE, Carraway H, Gore SD: DNA demethylating agents and histone deacetylase inhibitors in hematologic malignancies. Cancer J 2007, 13(1):40-48.
- [2]Garcia-Manero G, Yang H, Kuang SQ, O’Brien S, Thomas D, Kantarjian H: Epigenetics of acute lymphocytic leukemia. Semin Hematol 2009, 46(1):24-32.
- [3]Yoo CB, Jones PA: Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov 2006, 5(1):37-50.
- [4]Xing M: Gene methylation in thyroid tumorigenesis. Endocrinology 2007, 148(3):948-953.
- [5]Grady WM: Epigenetic events in the colorectum and in colon cancer. Biochem Soc Trans 2005, 33(Pt 4):684-688.
- [6]Karpf AR: Epigenomic reactivation screening to identify genes silenced by DNA hypermethylation in human cancer. Curr Opin Mol Ther 2007, 9(3):231-241.
- [7]Nelson WG, Yegnasubramanian S, Agoston AT, Bastian PJ, Lee BH, Nakayama M, De Marzo AM: Abnormal DNA methylation, epigenetics, and prostate cancer. Front Biosci 2007, 12:4254-4266.
- [8]Lavelle D, DeSimone J, Hankewych M, Kousnetzova T, Chen YH: Decitabine induces cell cycle arrest at the G1 phase via p21(WAF1) and the G2/M phase via the p38 MAP kinase pathway. Leuk Res 2003, 27(11):999-1007.
- [9]Berger J, Daxenbichler G: DNA methylation of nuclear receptor genes–possible role in malignancy. J Steroid Biochem Mol Biol 2002, 80(1):1-11.
- [10]Leader JE, Wang C, Fu M, Pestell RG: Epigenetic regulation of nuclear steroid receptors. Biochem Pharmacol 2006, 72(11):1589-1596.
- [11]Lind GE, Kleivi K, Meling GI, Teixeira MR, Thiis-Evensen E, Rognum TO, Lothe RA: ADAMTS1, CRABP1, and NR3C1 identified as epigenetically deregulated genes in colorectal tumorigenesis. Cell Oncol 2006, 28(5–6):259-272.
- [12]Zhu WG, Otterson GA: The interaction of histone deacetylase inhibitors and DNA methyltransferase inhibitors in the treatment of human cancer cells. Curr Med Chem Anti Canc Agents 2003, 3(3):187-199.
- [13]Estey E: Acute myeloid leukemia and myelodysplastic syndromes in older patients. J Clin Oncol Off J Am Soc Clin Oncol 2007, 25(14):1908-1915.
- [14]Herold MJ, McPherson KG, Reichardt HM: Glucocorticoids in T cell apoptosis and function. Cell Mol Life Sci 2006, 63(1):60-72.
- [15]Ji Z, Mei FC, Johnson BH, Thompson EB, Cheng X: Protein kinase A, not Epac, suppresses hedgehog activity and regulates glucocorticoid sensitivity in acute lymphoblastic leukemia cells. J Biol Chem 2007, 282(52):37370-37377.
- [16]Ji Z, Mei FC, Miller AL, Thompson EB, Cheng X: Protein kinase A (PKA) isoform RIIbeta mediates the synergistic killing effect of cAMP and glucocorticoid in acute lymphoblastic leukemia cells. J Biol Chem 2008, 283(32):21920-21925.
- [17]Miller AL, Garza AS, Johnson BH, Thompson EB: Pathway interactions between MAPKs, mTOR, PKA, and the glucocorticoid receptor in lymphoid cells. Cancer Cell Int 2007, 7:3. BioMed Central Full Text
- [18]Miller AL, Webb MS, Copik AJ, Wang Y, Johnson BH, Kumar R, Thompson EB: p38 Mitogen-activated protein kinase (MAPK) is a key mediator in glucocorticoid-induced apoptosis of lymphoid cells: correlation between p38 MAPK activation and site-specific phosphorylation of the human glucocorticoid receptor at serine 211. Mol Endocrinol 2005, 19(6):1569-1583.
- [19]Bachmann PS, Piazza RG, Janes ME, Wong NC, Davies C, Mogavero A, Bhadri VA, Szymanska B, Geninson G, Magistroni V, Cazzaniga G, Biondi A, Miranda-Saavedra D, Gottgens B, Saffery R, Craig JM, Marshall GM, Gambacorti-Passerini C, Lock RB: Epigenetic silencing of BIM in glucocorticoid poor-responsive pediatric acute lymphoblastic leukemia, and its reversal by histone deacetylase inhibition. Blood 2010, 116(16):3013-3022.
- [20]Bhadri VA, Trahair TN, Lock RB: Glucocorticoid resistance in paediatric acute lymphoblastic leukaemia. J Paediatr Child Health 2012, 48(8):634-640.
- [21]Lippman M: Clinical implications of glucocorticoid receptors in human leukemia. Am J Physiol 1982, 243(2):E103-E108.
- [22]Tissing WJ, Meijerink JP, den Boer ML, Brinkhof B, van Rossum EF, van Wering ER, Koper JW, Sonneveld P, Pieters R: Genetic variations in the glucocorticoid receptor gene are not related to glucocorticoid resistance in childhood acute lymphoblastic leukemia. Clin Cancer Res 2005, 11(16):6050-6056.
- [23]Gasson JC, Bourgeois S: A new determinant of glucocorticoid sensitivity in lymphoid cell lines. J Cell Biol 1983, 96(2):409-415.
- [24]Gasson JC, Ryden T, Bourgeois S: Role of de novo DNA methylation in the glucocorticoid resistance of a T-lymphoid cell line. Nature 1983, 302(5909):621-623.
- [25]Thompson EB, Smith JR, Bourgeois S, Harmon JM: Glucocorticoid receptors in human leukemias and related diseases. Klin Wochenschr 1985, 63(15):689-698.
- [26]Gailani S, Minowada J, Silvernail P, Nussbaum A, Kaiser N, Rosen F, Shimaoka K: Specific glucocorticoid binding in human hemopoietic cell lines and neoplastic tissue. Cancer Res 1973, 33(11):2653-2657.
- [27]Medh RD, Webb MS, Miller AL, Johnson BH, Fofanov Y, Li T, Wood TG, Luxon BA, Thompson EB: Gene expression profile of human lymphoid CEM cells sensitive and resistant to glucocorticoid-evoked apoptosis. Genomics 2003, 81(6):543-555.
- [28]Woodcock DM, Crowther PJ, Simmons DL, Cooper IA: Levels and stability of DNA methylation in random surviving cell clones derived from a Chinese hamster cell line after prolonged treatment with 5-aza-2′-deoxycytidine. Exp Cell Res 1986, 162(1):23-32.
- [29]Hagemann S, Heil O, Lyko F, Brueckner B: Azacytidine and decitabine induce gene-specific and non-random DNA demethylation in human cancer cell lines. PLoS One 2011, 6(3):e17388.
- [30]Harmon JM, Norman MR, Fowlkes BJ, Thompson EB: Dexamethasone induces irreversible G1 arrest and death of a human lymphoid cell line. J Cell Physiol 1979, 98(2):267-278.
- [31]Cowan KJ, Storey KB: Mitogen-activated protein kinases: new signaling pathways functioning in cellular responses to environmental stress. J Exp Biol 2003, 206(Pt 7):1107-1115.
- [32]Garza AS, Miller AL, Johnson BH, Thompson EB: Converting cell lines representing hematological malignancies from glucocorticoid-resistant to glucocorticoid-sensitive: signaling pathway interactions. Leuk Res 2009, 33(5):717-727.
- [33]Wang Z, Frederick J, Garabedian MJ: Deciphering the phosphorylation “code” of the glucocorticoid receptor in vivo. J Biol Chem 2002, 277(29):26573-26580.
- [34]Ramdas J, Liu W, Harmon JM: Glucocorticoid-induced cell death requires autoinduction of glucocorticoid receptor expression in human leukemic T cells. Cancer Res 1999, 59(6):1378-1385.
- [35]Geng CD, Schwartz JR, Vedeckis WV: A conserved molecular mechanism is responsible for the auto-up-regulation of glucocorticoid receptor gene promoters. Mol Endocrinol 2008, 22(12):2624-2642.
- [36]Zong J, Ashraf J, Thompson EB: The promoter and first, untranslated exon of the human glucocorticoid receptor gene are GC rich but lack consensus glucocorticoid receptor element sites. Mol Cell Biol 1990, 10(10):5580-5585.
- [37]Geng CD, Vedeckis WV: c-Myb and members of the c-Ets family of transcription factors act as molecular switches to mediate opposite steroid regulation of the human glucocorticoid receptor 1A promoter. J Biol Chem 2005, 280(52):43264-43271.
- [38]Sarvaiya PJ, Schwartz JR, Hernandez CP, Rodriguez PC, Vedeckis WV: Role of c-Myb in the survival of pre B-cell acute lymphoblastic leukemia and leukemogenesis. Am J Hematol 2012, 87(10):969-976.
- [39]Sarvaiya PJ, Schwartz JR, Geng CD, Vedeckis WV: c-Myb interacts with the glucocorticoid receptor and regulates its level in pre-B-acute lymphoblastic leukemia cells. Mol Cell Endocrinol 2012, 361(1–2):124-132.
- [40]Kerr JF, Wyllie AH, Currie AR: Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972, 26(4):239-257.
- [41]Kerr JF: History of the events leading to the formulation of the apoptosis concept. Toxicology 2002, 181–182:471-474.
- [42]Galluzzi L, Aaronson SA, Abrams J, Alnemri ES, Andrews DW, Baehrecke EH, Bazan NG, Blagosklonny MV, Blomgren K, Borner C, Bredesen DE, Brenner C, Castedo M, Cidlowski JA, Ciechanover A, Cohen GM, De Laurenzi V, De Maria R, Deshmukh M, Dynlacht BD, El D, Flavell RA, Fulda S, Garrido C, Golstein P, Gougeon ML, Green DR, Gronemeyer H, Hajnoczky G, Hardwick JM, et al.: Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ 2009, 16(8):1093-1107.
- [43]Achachi A, Florins A, Gillet N, Debacq C, Urbain P, Foutsop GM, Vandermeers F, Jasik A, Reichert M, Kerkhofs P, Lagneaux L, Burny A, Kettmann R, Willems L: Valproate activates bovine leukemia virus gene expression, triggers apoptosis, and induces leukemia/lymphoma regression in vivo. Proc Natl Acad Sci U S A 2005, 102(29):10309-10314.
- [44]Florean C, Schnekenburger M, Grandjenette C, Dicato M, Diederich M: Epigenomics of leukemia: from mechanisms to therapeutic applications. Epigenomics 2011, 3(5):581-609.
- [45]Oki Y, Issa JP: Epigenetic mechanisms in AML - a target for therapy. Cancer Treat Res 2010, 145:19-40.
- [46]Tamm I, Wagner M, Schmelz K: Decitabine activates specific caspases downstream of p73 in myeloid leukemia. Ann Hematol 2005, 84(Suppl 1):47-53.
- [47]Hsi LC, Xi X, Wu Y, Lippman SM: The methyltransferase inhibitor 5-aza-2-deoxycytidine induces apoptosis via induction of 15-lipoxygenase-1 in colorectal cancer cells. Mol Cancer Ther 2005, 4(11):1740-1746.
- [48]Zhou J, Bi C, Cheong LL, Mahara S, Liu SC, Tay KG, Koh TL, Yu Q, Chng WJ: The histone methyltransferase inhibitor, DZNep, up-regulates TXNIP, increases ROS production, and targets leukemia cells in AML. Blood 2011, 118(10):2830-2839.
- [49]Tan PT, Wei AH: The epigenomics revolution in myelodysplasia: a clinico-pathological perspective. Pathology 2011, 43(6):536-546.
- [50]Vannucchi AM, Guglielmelli P, Rambaldi A, Bogani C, Barbui T: Epigenetic therapy in myeloproliferative neoplasms: evidence and perspectives. J Cell Mol Med 2009, 13(8A):1437-1450.
- [51]Issa JP, Kantarjian HM: Targeting DNA methylation. Clin Cancer Res 2009, 15(12):3938-3946.
- [52]Geng CD, Vedeckis WV: A new, lineage specific, autoup-regulation mechanism for human glucocorticoid receptor gene expression in 697 pre-B-acute lymphoblastic leukemia cells. Mol Endocrinol 2011, 25(1):44-57.
- [53]Miller AL, Johnson BH, Medh RD, Townsend CM, Thompson EB: Glucocorticoids and polyamine inhibitors synergize to kill human leukemic CEM cells. Neoplasia 2002, 4(1):68-81.
- [54]Kaspers GJ, Pieters R, Klumper E, De Waal FC, Veerman AJ: Glucocorticoid resistance in childhood leukemia. Leuk Lymphoma 1994, 13(3–4):187-201.
- [55]Tanaka H, Makino Y, Okamoto K, Iida T, Yan K, Yoshikawa N: Redox regulation of the glucocorticoid receptor. Antioxid Redox Signal 1999, 1(4):403-423.
- [56]Medh RD, Wang A, Zhou F, Thompson EB: Constitutive expression of ectopic c-Myc delays glucocorticoid-evoked apoptosis of human leukemic CEM-C7 cells. Oncogene 2001, 20(34):4629-4639.
- [57]Yuh YS, Thompson EB: Glucocorticoid effect on oncogene/growth gene expression in human T lymphoblastic leukemic cell line CCRF-CEM. Specific c-myc mRNA suppression by dexamethasone. J Biol Chem 1989, 264(18):10904-10910.
- [58]Thompson EB: Stepping stones in the path of glucocorticoid-driven apoptosis of lymphoid cells. Acta Biochim Biophys Sin 2008, 40(7):595-600.
- [59]Pogribny I, Yi P, James SJ: A sensitive new method for rapid detection of abnormal methylation patterns in global DNA and within CpG islands. Biochem Biophys Res Commun 1999, 262(3):624-628.
- [60]Golovko G, Khanipov K, Rojas M, Martinez-Alcantara A, Howard JJ, Ballesteros E, Gupta S, Widger W, Fofanov Y: Slim-filter: an interactive Windows-based application for illumina genome analyzer data assessment and manipulation. BMC Bioinforma 2012, 13:166. BioMed Central Full Text