期刊论文详细信息
Journal of Neuroinflammation
Inhibition of NADPH oxidase activation reduces EAE-induced white matter damage in mice
Sang Won Suh2  Tiina M Kauppinen1  Tae Nyoung Chung3  Mackenzie Stevenson1  Min Sohn5  Eunhi Choi4  Bo Eun Lee2  Song Hee Lee2  In Yeol Kim2  A Ra Kho2  Jin Hee Kim2  Bo Young Choi2 
[1] Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada;Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea;CHA Bundang Medical Center, School of Medicine, CHA University, Kyunggi do, South Korea;Chuncheon Sacred Heart Hospital, Department of Rehabilitation Medicine, College of Medicine, Hallym University, Chuncheon, South Korea;Department of Nursing, Inha University, Incheon, South Korea
关键词: Microglia;    Apocynin;    Reactive oxygen species;    NADPH oxidase;    Multiple sclerosis;    Experimental autoimmune encephalomyelitis;   
Others  :  1221982
DOI  :  10.1186/s12974-015-0325-5
 received in 2014-12-10, accepted in 2015-05-15,  发布年份 2015
PDF
【 摘 要 】

Background

To evaluate the role of NADPH oxidase-mediated reactive oxygen species (ROS) production in multiple sclerosis pathogenesis, we examined the effects of apocynin, an NADPH oxidase assembly inhibitor, on experimental autoimmune encephalomyelitis (EAE).

Methods

EAE was induced by immunization with myelin oligodendrocyte glycoprotein (MOG (35-55)) in C57BL/6 female mice. Three weeks after initial immunization, the mice were analyzed for demyelination, immune cell infiltration, and ROS production. Apocynin (30 mg/kg) was given orally once daily for the entire experimental course or after the typical onset of clinical symptom (15 days after first MOG injection).

Results

Clinical signs of EAE first appeared on day 11 and reached a peak level on day 19 after the initial immunization. The daily clinical symptoms of EAE mice were profoundly reduced by apocynin. The apocynin-mediated inhibition of the clinical course of EAE was accompanied by suppression of demyelination, reduced infiltration by encephalitogenic immune cells including CD4, CD8, CD20, and F4/80-positive cells. Apocynin reduced MOG-induced pro-inflammatory cytokines in cultured microglia. Apocynin also remarkably inhibited EAE-associated ROS production and blood–brain barrier (BBB) disruption. Furthermore, the present study found that post-treatment with apocynin also reduced the clinical course of EAE and spinal cord demyelination.

Conclusions

These results demonstrate that apocynin inhibits the clinical features and neuropathological changes associated with EAE. Therefore, the present study suggests that inhibition of NADPH oxidase activation by apocynin may have a high therapeutic potential for treatment of multiple sclerosis pathogenesis.

【 授权许可】

   
2015 Choi et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150804144240455.pdf 3275KB PDF download
Fig. 8. 84KB Image download
Fig. 7. 82KB Image download
Fig. 6. 88KB Image download
Fig. 5. 109KB Image download
Fig. 4. 46KB Image download
Fig. 3. 135KB Image download
Fig. 2. 101KB Image download
Fig. 1. 122KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

【 参考文献 】
  • [1]Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG: Multiple sclerosis. N Engl J Med. 2000, 343:938-52.
  • [2]Hartung HP, Schafer B, Heininger K, Toyka KV: Suppression of experimental autoimmune neuritis by the oxygen radical scavengers superoxide dismutase and catalase. Ann Neurol. 1988, 23:453-60.
  • [3]Glabinski A, Tawsek NS, Bartosz G: Increased generation of superoxide radicals in the blood of MS patients. Acta Neurol Scand. 1993, 88:174-7.
  • [4]Brennan AM, Suh SW, Won SJ, Narasimhan P, Kauppinen TM, Lee H, et al.: NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nat Neurosci. 2009, 12:857-63.
  • [5]Suh SW, Gum ET, Hamby AM, Chan PH, Swanson RA: Hypoglycemic neuronal death is triggered by glucose reperfusion and activation of neuronal NADPH oxidase. J Clin Invest. 2007, 117:910-8.
  • [6]Suh SW, Hamby AM, Gum ET, Shin BS, Won SJ, Sheline CT, et al.: Sequential release of nitric oxide, zinc, and superoxide in hypoglycemic neuronal death. J Cereb Blood Flow Metab. 2008, 28:1697-706.
  • [7]Suh SW, Shin BS, Ma H, Van Hoecke M, Brennan AM, Yenari MA, et al.: Glucose and NADPH oxidase drive neuronal superoxide formation in stroke. Ann Neurol. 2008, 64:654-63.
  • [8]Choi BY, Jang BG, Kim JH, Lee BE, Sohn M, Song HK, et al.: Prevention of traumatic brain injury-induced neuronal death by inhibition of NADPH oxidase activation. Brain Res. 2012, 1481:49-58.
  • [9]Kim JH, Jang BG, Choi BY, Kim HS, Sohn M, Chung TN, et al.: Post-treatment of an NADPH oxidase inhibitor prevents seizure-induced neuronal death. Brain Res. 2013, 1499:163-72.
  • [10]Stolk J, Hiltermann TJ, Dijkman JH, Verhoeven AJ: Characteristics of the inhibition of NADPH oxidase activation in neutrophils by apocynin, a methoxy-substituted catechol. Am J Respir Cell Mol Biol. 1994, 11:95-102.
  • [11]Van den Worm E, Beukelman CJ, Van den Berg AJ, Kroes BH, Labadie RP, Van Dijk H: Effects of methoxylation of apocynin and analogs on the inhibition of reactive oxygen species production by stimulated human neutrophils. Eur J Pharmacol. 2001, 433:225-30.
  • [12]Hayashi T, Juliet PA, Kano-Hayashi H, Tsunekawa T, Dingqunfang D, Sumi D, et al.: NADPH oxidase inhibitor, apocynin, restores the impaired endothelial-dependent and -independent responses and scavenges superoxide anion in rats with type 2 diabetes complicated by NO dysfunction. Diabetes Obes Metab. 2005, 7:334-43.
  • [13]Wang Q, Tompkins KD, Simonyi A, Korthuis RJ, Sun AY, Sun GY: Apocynin protects against global cerebral ischemia-reperfusion-induced oxidative stress and injury in the gerbil hippocampus. Brain Res. 2006, 1090:182-9.
  • [14]Yenari MA, Xu L, Tang XN, Qiao Y, Giffard RG: Microglia potentiate damage to blood–brain barrier constituents: improvement by minocycline in vivo and in vitro. Stroke. 2006, 37:1087-93.
  • [15]van der Goes A, Brouwer J, Hoekstra K, Roos D, van den Berg TK, Dijkstra CD: Reactive oxygen species are required for the phagocytosis of myelin by macrophages. J Neuroimmunol. 1998, 92:67-75.
  • [16]van der Veen RC, Dietlin TA, Hofman FM, Pen L, Segal BH, Holland SM: Superoxide prevents nitric oxide-mediated suppression of helper T lymphocytes: decreased autoimmune encephalomyelitis in nicotinamide adenine dinucleotide phosphate oxidase knockout mice. J Immunol. 2000, 164:5177-83.
  • [17]Mendel I, Kerlero de Rosbo N, Ben-Nun A: A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H-2b mice: fine specificity and T cell receptor V beta expression of encephalitogenic T cells. Eur J Immunol. 1995, 25:1951-9.
  • [18]Shevach EM, Chang JT, Segal BM: The critical role of IL-12 and the IL-12R beta 2 subunit in the generation of pathogenic autoreactive Th1 cells. Springer Semin Immunopathol. 1999, 21:249-62.
  • [19]Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG: Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2012., 8Article ID e1000412
  • [20]Jones MV, Nguyen TT, Deboy CA, Griffin JW, Whartenby KA, Kerr DA, et al.: Behavioral and pathological outcomes in MOG 35–55 experimental autoimmune encephalomyelitis. J Neuroimmunol. 2008, 199:83-93.
  • [21]McCully JD, Wakiyama H, Hsieh YJ, Jones M, Levitsky S: Differential contribution of necrosis and apoptosis in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2004, 286:H1923-35.
  • [22]Bindokas VP, Jordan J, Lee CC, Miller RJ: Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine. J Neurosci. 1996, 16:1324-36.
  • [23]Tang XN, Berman AE, Swanson RA, Yenari MA: Digitally quantifying cerebral hemorrhage using photoshop and image J. J Neurosci Methods. 2010, 190:240-3.
  • [24]Kauppinen TM, Swanson RA: Poly(ADP-ribose) polymerase-1 promotes microglial activation, proliferation, and matrix metalloproteinase-9-mediated neuron death. J Immunol. 2005, 174:2288-96.
  • [25]Kauppinen TM, Suh SW, Higashi Y, Berman AE, Escartin C, Won SJ, et al.: Poly(ADP-ribose)polymerase-1 modulates microglial responses to amyloid beta. J Neuroinflammation. 2011, 8:152. BioMed Central Full Text
  • [26]Brennan M, Gaur A, Pahuja A, Lusis AJ, Reynolds WF: Mice lacking myeloperoxidase are more susceptible to experimental autoimmune encephalomyelitis. J Neuroimmunol. 2001, 112:97-105.
  • [27]Pulli B, Bure L, Wojtkiewicz GR, Iwamoto Y, Ali M, Li D, et al.: Multiple sclerosis: myeloperoxidase immunoradiology improves detection of acute and chronic disease in experimental model. Radiology 2014, 275(2):480-9.
  • [28]Nauseef WM, Olsson I, Arnljots K: Biosynthesis and processing of myeloperoxidase—a marker for myeloid cell differentiation. Eur J Haematol. 1988, 40:97-110.
  • [29]van Leeuwen M, Gijbels MJ, Duijvestijn A, Smook M, van de Gaar MJ, Heeringa P, et al.: Accumulation of myeloperoxidase-positive neutrophils in atherosclerotic lesions in LDLR-/- mice. Arterioscler, Thromb, Vasc Biol. 2008, 28:84-9.
  • [30]Malfroy B, Doctrow SR, Orr PL, Tocco G, Fedoseyeva EV, Benichou G: Prevention and suppression of autoimmune encephalomyelitis by EUK-8, a synthetic catalytic scavenger of oxygen-reactive metabolites. Cell Immunol. 1997, 177:62-8.
  • [31]Guy J, Ellis EA, Hope GM, Rao NA: Antioxidant enzyme suppression of demyelination in experimental optic neuritis. Curr Eye Res. 1989, 8:467-77.
  • [32]Ruuls SR, Bauer J, Sontrop K, Huitinga I, t Hart BA, Dijkstra CD: Reactive oxygen species are involved in the pathogenesis of experimental allergic encephalomyelitis in lewis rats. J Neuroimmunol 1995, 56:207-17.
  • [33]Rubanyi GM, Vanhoutte PM: Oxygen-derived free radicals, endothelium, and responsiveness of vascular smooth muscle. Am J Physiol. 1986, 250:H815-21.
  • [34]Chia LS, Thompson JE, Moscarello MA: Disorder in human myelin induced by superoxide radical: an in vitro investigation. Biochem Biophys Res Commun. 1983, 117:141-6.
  • [35]Konat GW, Wiggins RC: Effect of reactive oxygen species on myelin membrane proteins. J Neurochem. 1985, 45:1113-8.
  • [36]Griot C, Burge T, Vandevelde M, Peterhans E: Antibody-induced generation of reactive oxygen radicals by brain macrophages in canine distemper encephalitis: a mechanism for bystander demyelination. Acta Neuropathol. 1989, 78:396-403.
  • [37]Okuda Y, Nakatsuji Y, Fujimura H, Esumi H, Ogura T, Yanagihara T, et al.: Expression of the inducible isoform of nitric oxide synthase in the central nervous system of mice correlates with the severity of actively induced experimental allergic encephalomyelitis. J Neuroimmunol. 1995, 62:103-12.
  • [38]Hart BA, Simons JM: Metabolic activation of phenols by stimulated neutrophils: a concept for a selective type of anti-inflammatory drug. Biotechnol Ther. 1992, 3:119-35.
  • [39]Peters EA, Hiltermann JT, Stolk J: Effect of apocynin on ozone-induced airway hyperresponsiveness to methacholine in asthmatics. Free Radic Biol Med. 2001, 31:1442-7.
  • [40]Tang XN, Cairns B, Cairns N, Yenari MA: Apocynin improves outcome in experimental stroke with a narrow dose range. Neuroscience. 2008, 154:556-62.
  • [41]Wang Q, Smith RE, Luchtefeld R, Sun AY, Simonyi A, Luo R, et al.: Bioavailability of apocynin through its conversion to glycoconjugate but not to diapocynin. Phytomedicine. 2008, 15:496-503.
  • [42]Schreurs MP, Cipolla MJ: Cerebrovascular dysfunction and blood–brain barrier permeability induced by oxidized LDL are prevented by apocynin and magnesium sulfate in female rats. J Cardiovasc Pharmacol. 2014, 63:33-9.
  • [43]Nam SJ, Oh IS, Yoon YH, Kwon BI, Kang W, Kim HJ, et al.: Apocynin regulates cytokine production of CD8(+) T cells. Clin Exp Med. 2014, 14:261-8.
  • [44]Choi BY, Jang BG, Kim JH, Seo JN, Wu G, Sohn M, et al.: Copper/zinc chelation by clioquinol reduces spinal cord white matter damage and behavioral deficits in a murine MOG-induced multiple sclerosis model. Neurobiol Dis. 2013, 54:382-91.
  • [45]Noh KM, Koh JY: Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes. J Neurosci. 2000, 20:RC111.
  • [46]Kim YH, Koh JY: The role of NADPH oxidase and neuronal nitric oxide synthase in zinc-induced poly(ADP-ribose) polymerase activation and cell death in cortical culture. Exp Neurol. 2002, 177:407-18.
  • [47]Gupte SA, Levine RJ, Gupte RS, Young ME, Lionetti V, Labinskyy V, et al.: Glucose-6-phosphate dehydrogenase-derived NADPH fuels superoxide production in the failing heart. J Mol Cell Cardiol. 2006, 41:340-9.
  • [48]Li J, Baud O, Vartanian T, Volpe JJ, Rosenberg PA: Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc Natl Acad Sci U S A. 2005, 102:9936-41.
  • [49]Liu Y, Hao W, Letiembre M, Walter S, Kulanga M, Neumann H, et al.: Suppression of microglial inflammatory activity by myelin phagocytosis: role of p47-PHOX-mediated generation of reactive oxygen species. J Neurosci. 2006, 26:12904-13.
  • [50]Padgett LE, Burg AR, Lei W, Tse HM: Loss of NADPH oxidase-derived superoxide skews macrophage phenotypes to delay type 1 diabetes. Diabetes. 2015, 64:937-46.
  • [51]Tse HM, Thayer TC, Steele C, Cuda CM, Morel L, Piganelli JD, et al.: NADPH oxidase deficiency regulates Th lineage commitment and modulates autoimmunity. J Immunol. 2010, 185:5247-58.
  • [52]Hultqvist M, Olofsson P, Holmberg J, Backstrom BT, Tordsson J, Holmdahl R: Enhanced autoimmunity, arthritis, and encephalomyelitis in mice with a reduced oxidative burst due to a mutation in the Ncf1 gene. Proc Natl Acad Sci U S A 2004, 101:12646-51.
  文献评价指标  
  下载次数:63次 浏览次数:28次