期刊论文详细信息
Journal of Nanobiotechnology
Toxicity of silver nanoparticle in rat ear and BALB/c 3T3 cell line
Ilmari Pyykkö2  Tuula Heinonen1  Marika Mannerström1  Hao Feng2  Jing Zou3 
[1] The Finnish Centre for Alternative Methods, School of Medicine, University of Tampere, Tampere, Finland;Hearing and Balance Research Unit, Field of Oto-laryngology, School of Medicine, University of Tampere, Tampere, Finland;Department of Otolaryngology-Head and Neck Surgery, Center for Otolaryngology-Head & Neck Surgery of Chinese PLA, Changhai Hospital, Second Military Medical University, Shanghai, China
关键词: Nanomaterial;    Imaging;    Ear;    Biological barrier;    Animal model;   
Others  :  1139305
DOI  :  10.1186/s12951-014-0052-6
 received in 2014-08-17, accepted in 2014-11-12,  发布年份 2014
PDF
【 摘 要 】

Background

Silver nanoparticles (AgNPs) displayed strong activities in anti-bacterial, anti-viral, and anti-fungal studies and was reportedly efficient in treating otitis media .The potential impact of AgNPs on the inner ear was missing.

Objective

Attempted to evaluate the potential toxicity of AgNPs in the inner ear, middle ear, and external ear canal after transtympanic injection in rats.

Results

In in vitro studies, the IC50 for AgNPs in neutral red uptake assay was lower than that in NAD(P)H-dependent cellular oxidoreductase enzyme assay (WST-1) and higher than that in total cellular ATP and nuclear membrane integrity (propidium iodide) assessments. In in vivo experiments, magnetic resonance imaging (MRI) showed that significant changes in the permeability of biological barriers occurred in the middle ear mucosa, the skin of the external ear canal, and the inner ear at 5 h post-transtympanic injection of AgNPs at concentrations ranging from 20 μg/ml to 4000 μg/ml. The alterations in permeability showed a dosage-response relationship, and were reversible. The auditory brainstem response showed that 4000 μg/ml AgNPs induced hearing loss with partial recovery at 7 d, whereas 20 μg/ml caused reversible hearing loss. The functional change in auditory system was in line with the histology results. In general, the BALB/c 3T3 cell line is more than 1000 times more sensitive than the in vivo studies. Impairment of the mitochondrial function was indicated to be the mechanism of toxicity of AgNPs.

Conclusion

These results suggest that AgNPs caused significant, dose-dependent changes in the permeability of biological barriers in the middle ear mucosa, the skin of the external ear canal, and the inner ear. In general, the BALB/c 3T3 cell line is more than 1000 times more sensitive than the in vivo studies. The rat ear model might be expended to other engineered nanomaterials in nanotoxicology study.

【 授权许可】

   
2014 Zou et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150321092139202.pdf 1436KB PDF download
Figure 5. 105KB Image download
Figure 4. 32KB Image download
Figure 3. 33KB Image download
Figure 2. 63KB Image download
Figure 1. 39KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Hall-Stoodley L, Hu FZ, Gieseke A, Nistico L, Nguyen D, Hayes J, Forbes M, Greenberg DP, Dice B, Burrows A, Wackym PA, Stoodley P, Post JC, Ehrlich GD, Kerschner JE: Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA 2006, 296(2):202-211.
  • [2]Wessman M, Bjarnsholt T, Eickhardt-Sorensen SR, Johansen HK, Homoe P: Mucosal biofilm detection in chronic otitis media: a study of middle ear biopsies from Greenlandic patients.Eur Arch Otorhinolaryngol 2014.
  • [3]Gu X, Keyoumu Y, Long L, Zhang H: Detection of bacterial biofilms in different types of chronic otitis media.Eur Arch Otorhinolaryngol 2013
  • [4]Nguyen CT, Robinson SR, Jung W, Novak MA, Boppart SA, Allen JB: Investigation of bacterial biofilm in the human middle ear using optical coherence tomography and acoustic measurements. Hear Res 2013, 301:193-200.
  • [5]Sawada I, Fachrul R, Ito T, Ohmukai Y, Maruyama T, Matsuyama H: Development of a hydrophilic polymer membrane containing silver nanoparticles with both organic antifouling and antibacterial properties. J Membr Sci 2012, 387–388:1-6.
  • [6]Doudi M, Naghsh N, Setorki M: Comparison of the effects of silver nanoparticles on pathogenic bacteria resistant to beta-lactam antibiotics (ESBLs) as a prokaryote model and Wistar rats as a eukaryote model. Med Sci Monit Basic Res 2013, 19:103-110.
  • [7]Lu Z, Rong K, Li J, Yang H, Chen R: Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria. J Mater Sci Mater Med 2013, 24(6):1465-1471.
  • [8]Pinto RJ, Almeida A, Fernandes SC, Freire CS, Silvestre AJ, Neto CP, Trindade T: Antifungal activity of transparent nanocomposite thin films of pullulan and silver against Aspergillus niger. Colloids Surf B Biointerfaces 2013, 103:143-148.
  • [9]Xiang D, Zheng Y, Duan W, Li X, Yin J, Shigdar S, O'Connor ML, Marappan M, Zhao X, Miao Y, Xiang B, Zheng C: Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo. Int J Nanomedicine 2013, 8:4103-4113.
  • [10]You C, Han C, Wang X, Zheng Y, Li Q, Hu X, Sun H: The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol Biol Rep 2012, 39:9193-9201.
  • [11]Semenov FV, Fidarova KM: The treatment of the patients presenting with chronic inflammation of the trepanation cavity with a preparation containing silver nanoparticles following sanitation surgery of the open type. Vestn Otorinolaringol 2012, 6:117-119.
  • [12]Kim YS, Song MY, Park JD, Song KS, Ryu HR, Chung YH, Chang HK, Lee JH, Oh KH, Kelman BJ, Hwang IK, Yu IJ: Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol 2010, 7:20. BioMed Central Full Text
  • [13]Sharma HS, Hussain S, Schlager J, Ali SF, Sharma A: Influence of nanoparticles on blood–brain barrier permeability and brain edema formation in rats. Acta Neurochir Suppl 2010, 106:359-364.
  • [14]Zou J, Saulnier P, Perrier T, Zhang Y, Manninen T, Toppila E, Pyykko I: Distribution of lipid nanocapsules in different cochlear cell populations after round window membrane permeation. J Biomed Mater Res B Appl Biomater 2008, 87(1):10-18.
  • [15]Zhang Y, Zhang W, Lobler M, Schmitz KP, Saulnier P, Perrier T, Pyykko I, Zou J: Inner ear biocompatibility of lipid nanocapsules after round window membrane application. Int J Pharm 2011, 404(1–2):211-219.
  • [16]Zou J, Sood R, Ranjan S, Poe D, Ramadan UA, Kinnunen PK, Pyykko I: Manufacturing and in vivo inner ear visualization of MRI traceable liposome nanoparticles encapsulating gadolinium. J Nanobiotechnology 2010, 8:32. BioMed Central Full Text
  • [17]Zou J, Sood R, Ranjan S, Poe D, Ramadan UA, Pyykko I, Kinnunen PK: Size-dependent passage of liposome nanocarriers with preserved posttransport integrity across the middle-inner ear barriers in rats. Otol Neurotol 2012, 33(4):666-673.
  • [18]Zou J, Li M, Zhang Y, Zheng G, Chen D, Chen S, Zheng H: Transport augmentation through the blood-inner ear barriers of guinea pigs treated with 3-nitropropionic acid and patients with acute hearing loss, visualized with 3.0 T MRI. Otol Neurotol 2011, 32(2):204-212.
  • [19]Counter SA, Bjelke B, Borg E, Klason T, Chen Z, Duan ML: Magnetic resonance imaging of the membranous labyrinth during in vivo gadolinium (Gd-DTPA-BMA) uptake in the normal and lesioned cochlea. Neuroreport 2000, 11(18):3979-3983.
  • [20]Powers BE, Widholm JJ, Lasky RE, Schantz SL: Auditory deficits in rats exposed to an environmental PCB mixture during development. Toxicol Sci 2006, 89(2):415-422.
  • [21]Ferrary E, Sterkers O, Saumon G, Tran Ba Huy P, Amiel C: Facilitated transfer of glucose from blood into perilymph in the rat cochlea. Am J Physiol 1987, 253(1 Pt 2):F59-F65.
  • [22]Sterkers O, Ferrary E, Saumon G, Amiel C: Na and nonelectrolyte entry into inner ear fluids of the rat. Am J Physiol 1987, 253(1 Pt 2):F50-F58.
  • [23]Zou J, Pyykko I, Counter SA, Klason T, Bretlau P, Bjelke B: In vivo observation of dynamic perilymph formation using 4.7 T MRI with gadolinium as a tracer. Acta Otolaryngol 2003, 123(8):910-915.
  • [24]Counter SA, Bjelke B, Klason T, Chen Z, Borg E: Magnetic resonance imaging of the cochlea, spiral ganglia and eighth nerve of the guinea pig. Neuroreport 1999, 10(3):473-479.
  • [25]Zou J, Zhang W, Poe D, Zhang Y, Ramadan UA, Pyykko I: Differential passage of gadolinium through the mouse inner ear barriers evaluated with 4.7 T MRI. Hear Res 2010, 259(1–2):36-43.
  • [26]Hsin YH, Chen CF, Huang S, Shih TS, Lai PS, Chueh PJ: The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 2008, 179(3):130-139.
  • [27]Organisation for Economic Co-operation and Development: Guidance document on using cytotoxicity tests to estimate starting doses for acute oral systemic toxicity tests ENV/JM/MONO 2010, 20(No. 129):1-54.
  • [28]Ngamwongsatit P, Banada PP, Panbangred W, Bhunia AK: WST-1-based cell cytotoxicity assay as a substitute for MTT-based assay for rapid detection of toxigenic Bacillus species using CHO cell line. J Microbiol Methods 2008, 73(3):211-215.
  • [29]Gagne F, Auclair J, Turcotte P, Gagnon C: Sublethal effects of silver nanoparticles and dissolved silver in freshwater mussels. J Toxicol Environ Health A 2013, 76(8):479-490.
  • [30]Zou J, Poe D, Ramadan UA, Pyykko I: Oval window transport of Gd-dOTA from rat middle ear to vestibulum and scala vestibuli visualized by in vivo magnetic resonance imaging. Ann Otol Rhinol Laryngol 2012, 121(2):119-128.
  • [31]Zou J, Zhang Y, Yin S, Wu H, Pyykko I: Mitochondrial dysfunction disrupts trafficking of Kir4.1 in spiral ganglion satellite cells. J Neurosci Res 2009, 87(1):141-149.
  • [32]Zou J: Transport augmentation through the blood-inner ear barriers of guinea pigs treated with 3-nitropropionic acid and patients with acute hearing loss, visualized with 3.0 T MRI: figure labeling clarification. Otol Neurotol 2012, 33(5):691.
  • [33]Zou J, Zhang Y, Zhang W, Poe D, Zhai S, Yang S, Pyykko I: Mitochondria toxin-induced acute cochlear cell death indicates cellular activity-correlated energy consumption. Eur Arch Otorhinolaryngol 2013, 270(9):2403-2415.
  • [34]Reuther R: NANOVALID Report Summary. 2013. http://cordis.europa.eu/result/rcn/140307_en.html
  • [35]Viberg A, Canlon B: The guide to plotting a cochleogram. Hear Res 2004, 197(1–2):1-10.
  • [36]Johnson TA, Brown CJ: Threshold prediction using the auditory steady-state response and the tone burst auditory brain stem response: a within-subject comparison. Ear Hear 2005, 26(6):559-576.
  • [37]Ngo JK, Pomatto LC, Davies KJ: Upregulation of the mitochondrial Lon Protease allows adaptation to acute oxidative stress but dysregulation is associated with chronic stress, disease, and aging. Redox Biol 2013, 1(1):258-264.
  • [38]van Aerle R, Lange A, Moorhouse A, Paszkiewicz KH, Ball K, Johnston BD, de-Bastos E, Booth T, Tyler CR, Santos EM: Molecular Mechanisms of Toxicity of Silver Nanoparticles in Zebrafish Embryos.Environ Sci Technol 2013
  • [39]Teodoro JS, Simoes AM, Duarte FV, Rolo AP, Murdoch RC, Hussain SM, Palmeira CM: Assessment of the toxicity of silver nanoparticles in vitro: a mitochondrial perspective. Toxicol In Vitro 2011, 25(3):664-670.
  • [40]Costa CS, Ronconi JV, Daufenbach JF, Goncalves CL, Rezin GT, Streck EL, Paula MM: In vitro effects of silver nanoparticles on the mitochondrial respiratory chain. Mol Cell Biochem 2010, 342(1–2):51-56.
  文献评价指标  
  下载次数:7次 浏览次数:13次