| Journal of Biomedical Science | |
| Priming adult stem cells by hypoxic pretreatments for applications in regenerative medicine | |
| Carlo Guarnieri3  Alice Pasini2  Marco Govoni3  Francesca Bonafè1  Emanuele Giordano3  Claudio Muscari3  | |
| [1] National Institute for Cardiovascular Research, Bologna, Italy;Laboratory of Cellular and Molecular Engineering “Silvio Cavalcanti,” Department of Electrical, Electronic, and Information Engineering “G. Marconi” (DEI), University of Bologna, Cesena, FC, Italy;BioEngLab, Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-CIRI), University of Bologna, Ozzano Emilia, BO, Italy | |
| 关键词: Cell differentiation; Apoptosis; Stem cell; Preconditioning; Reoxygenation; Hypoxia; | |
| Others : 823348 DOI : 10.1186/1423-0127-20-63 |
|
| received in 2013-07-23, accepted in 2013-08-24, 发布年份 2013 | |
PDF
|
|
【 摘 要 】
The efficiency of regenerative medicine can be ameliorated by improving the biological performances of stem cells before their transplantation. Several ex-vivo protocols of non-damaging cell hypoxia have been demonstrated to significantly increase survival, proliferation and post-engraftment differentiation potential of stem cells. The best results for priming cultured stem cells against a following, otherwise lethal, ischemic stress have been obtained with brief intermittent episodes of hypoxia, or anoxia, and reoxygenation in accordance with the extraordinary protection afforded by the conventional maneuver of ischemic preconditioning in severely ischemic organs. These protocols of hypoxic preconditioning can be rather easily reproduced in a laboratory; however, more suitable pharmacological interventions inducing stem cell responses similar to those activated in hypoxia are considered among the most promising solutions for future applications in cell therapy. Here we want to offer an up-to-date review of the molecular mechanisms translating hypoxia into beneficial events for regenerative medicine. To this aim the involvement of epigenetic modifications, microRNAs, and oxidative stress, mainly activated by hypoxia inducible factors, will be discussed. Stem cell adaptation to their natural hypoxic microenvironments (niche) in healthy and neoplastic tissues will be also considered.
【 授权许可】
2013 Muscari et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140713002817813.pdf | 795KB | ||
| Figure 2. | 86KB | Image | |
| Figure 1. | 81KB | Image |
【 图 表 】
Figure 1.
Figure 2.
【 参考文献 】
- [1]Ogawa M: Differentiation and proliferation of hematopoietic stem cells. Blood 1993, 81(11):2844-2853.
- [2]Punzel M, Ho AD: Divisional history and pluripotency of human hematopoietic stem cells. Ann N Y Acad Sci 2001, 938:72-81.
- [3]Behr B, Ko SH, Wong VW, Gurtner GC, Longaker MT: Stem cells. Plast Reconstr Surg 2010, 126(4):1163-1171.
- [4]Kolios G, Moodley Y: Introduction to stem cells and regenerative medicine. Respiration 2013, 85(1):3-10.
- [5]Sohn YD, Han JW, Yoon YS: Generation of induced pluripotent stem cells from somatic cells. Prog Mol Biol Transl Sci 2012, 111:1-26.
- [6]Catacchio I, Berardi S, Reale A, De Luisi A, Racanelli V, Vacca A, Ria R: Evidence for bone marrow adult stem cell plasticity: properties, molecular mechanisms, negative aspects, and clinical applications of hematopoietic and mesenchymal stem cells transdifferentiation. Stem Cells Int 2013, 2013:589139.
- [7]Kucia M, Ratajczak J, Reca R, Janowska-Wieczorek A, Ratajczak MZ: Tissue-specific muscle, neural and liver stem/progenitor cells reside in the bone marrow, respond to an SDF-1 gradient and are mobilized into peripheral blood during stress and tissue injury. Blood Cells Mol Dis 2004, 32(1):52-57.
- [8]Nakamura Y, Yasuda T, Weisel RD, Li RK: Enhanced cell transplantation: preventing apoptosis increases cell survival and ventricular function. Am J Physiol Heart Circ Physiol 2006, 291(2):H939-H947.
- [9]Emamaullee JA, Shapiro AM: Interventional strategies to prevent beta-cell apoptosis in islet transplantation. Diabetes 2006, 55(7):1907-1914.
- [10]Thomas FT, Contreras JL, Bilbao G, Ricordi C, Curiel D, Thomas JM: Anoikis, extracellular matrix, and apoptosis factors in isolated cell transplantation. Surgery 1999, 126(2):299-304.
- [11]Muscari C, Bonafè F, Martin-Suarez S, Valgimigli S, Valente S, Fiumana E, Fiorelli F, Rubini G, Guarnieri C, Caldarera CM, Capitani O, Arpesella G, Pasquinelli G: Restored perfusion and reduced inflammation in the infarcted heart after grafting stem cells with a hyaluronan-based scaffold. J Cell Mol Med 2013, 17(4):518-530.
- [12]Bonaros N, Rauf R, Werner E, Schlechta B, Rohde E, Kocher A, Bonatti J, Laufer G: Neoangiogenesis after combined transplantation of skeletal myoblasts and angiopoietic progenitors leads to increased cell engraftment and lower apoptosis rates in ischemic heart failure. Interact Cardiovasc Thorac Surg 2008, 7(2):249-255.
- [13]Fiumana E, Pasquinelli G, Foroni L, Carboni M, Bonafé F, Orrico C, Nardo B, Tsivian M, Neri F, Arpesella G, Guarnieri C, Caldarera CM, Muscari C: Localization of mesenchymal stem cells grafted with a hyaluronan-based scaffold in the infarcted heart. J Surg Res 2013, 179(1):e21-e29.
- [14]Wu KH, Mo XM, Han ZC, Zhou B: Cardiac cell therapy: pre-conditioning effects in cell-delivery strategies. Cytotherapy 2012, 14(3):260-266.
- [15]Najafi R, Sharifi AM: Deferoxamine preconditioning potentiates mesenchymal stem cell homing in vitro and in streptozotocin-diabetic rats. Expert Opin Biol Ther 2013, 13(7):959-972.
- [16]Alchera E, Dal Ponte C, Imarisio C, Albano E, Carini R: Molecular mechanisms of liver preconditioning. World J Gastroenterol 2010, 16(48):6058-6067.
- [17]Mahfoudh-Boussaid A, Zaouali MA, Hadj-Ayed K, Miled AH, Saidane-Mosbahi D, Rosello-Catafau J, Ben Abdennebi H: Ischemic preconditioning reduces endoplasmic reticulum stress and upregulates hypoxia inducible factor-1α in ischemic kidney: the role of nitric oxide. J Biomed Sci 2012, 7(2):e32296.
- [18]Narayanan SV, Dave KR, Perez-Pinzon M: Ischemic preconditioning and clinical scenarios. Curr Opin Neurol 2013, 26(1):1-7.
- [19]Babu GG, Walker JM, Yellon DM, Hausenloy DJ: Peri-procedural myocardial injury during percutaneous coronary intervention: an important target for cardioprotection. Eur Heart J 2011, 32(1):23-31.
- [20]Nicolini F, Beghi C, Muscari C, Agostinelli A, Maria Budillon A, Spaggiari I, Gherli T: Myocardial protection in adult cardiac surgery: current options and future challenges. Eur J Cardiothorac Surg 2003, 24(6):986-993.
- [21]Schofield R: The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 1978, 4(1–2):7-25.
- [22]Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR: A stem cell molecular signature. Science 2002, 298(5593):601-604.
- [23]Solis MA, Chen YH, Wong TY, Bittencourt VZ, Lin YC, Huang LL: Hyaluronan regulates cell behavior: a potential niche matrix for stem cells. Biochem Res Int 2012, 2012:346972.
- [24]Singh SR: Stem cell niche in tissue homeostasis, aging and cancer. Curr Med Chem 2012, 19(35):5965-5974.
- [25]Mohyeldin A, Garzón-Muvdi T, Quiñones-Hinojosa A: Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 2010, 7(2):150-161.
- [26]Burness ML, Sipkins DA: The stem cell niche in health and malignancy. Semin Cancer Biol 2010, 20(2):107-115.
- [27]Ezashi T, Das P, Roberts RM: Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci U S A 2005, 102(13):4783-4788.
- [28]Cabarcas SM, Mathews LA, Farrar WL: The cancer stem cell niche–there goes the neighborhood? Int J Cancer 2011, 129(10):2315-2327.
- [29]Pialoux V, Mounier R: Hypoxia-induced oxidative stress in health disorders. Oxid Med Cell Longev 2012, 2012:940121.
- [30]Kaufman DS: HIF hits Wnt in the stem cell niche. Nat Cell Biol 2010, 12(10):926-927.
- [31]Pouysségur J, Dayan F, Mazure NM: Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 2006, 441(7092):437-443.
- [32]Zagorska A, Dulak J: HIF-1: the knowns and unknowns of hypoxia sensing. Acta Biochim 2004, 51(3):563-585.
- [33]Boulahbel H, Durán RV, Gottlieb E: Prolyl hydroxylases as regulators of cell metabolism. Biochem Soc Trans 2009, 37(Pt 1):291-294.
- [34]Majmundar AJ, Wong WJ, Simon MC: Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 2010, 40(2):294-309.
- [35]Wenger RH, Stiehl DP, Camenisch G: Integration of oxygen signaling at the consensus HRE. Sci STKE 2005, 2005(306):re12.
- [36]Tsai YP, Wu KJ: Hypoxia-regulated target genes implicated in tumor metastasis. J Biomed Sci 2012, 19:102.
- [37]Ong SG, Hausenloy DJ: Hypoxia-inducible factor as a therapeutic target for cardioprotection. Pharmacol Ther 2012, 136(1):69-81.
- [38]Johnson AB, Barton MC: Hypoxia-induced and stress-specific changes in chromatin structure and function. Mutat Res 2007, 618(1–2):149-162.
- [39]Wang F, Zhang R, Beischlag TV, Muchardt C, Yaniv M, Hankinson O: Roles of Brahma and Brahma/SWI2-related gene 1 in hypoxic induction of the erythropoietin gene. J Biol Chem 2004, 279(45):46733-46741.
- [40]Kenneth NS, Mudie S, van Uden P, Rocha S: SWI/SNF regulates the cellular response to hypoxia. J Biol Chem 2009, 284(7):4123-4131.
- [41]Dekanty A, Romero NM, Bertolin AP, Thomas MG, Leishman CC, Perez-Perri JI, Boccaccio GL, Wappner P: Drosophila genome-wide RNAi screen identifies multiple regulators of HIF-dependent transcription in hypoxia. PLoS Genet 2010, 6(6):e1000994.
- [42]Johnson AB, Denko N, Barton MC: Hypoxia induces a novel signature of chromatin modifications and global repression of transcription. Mutat Res 2008, 640(1–2):174-179.
- [43]Shi Y, Whetstine JR: Dynamic regulation of histone lysine methylation by demethylases. Mol Cell 2007, 25(1):1-14.
- [44]Pollard PJ, Loenarz C, Mole DR, McDonough MA, Gleadle JM, Schofield CJ, Ratcliffe PJ: Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1alpha. Biochem J 2008, 416(3):387-394.
- [45]Loh YH, Zhang W, Chen X, George J, Ng HH: Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes Dev 2007, 21(20):2545-57.
- [46]Mathieu J, Zhang Z, Nelson A, Lamba DA, Reh TA, Ware C, Ruohola-Baker H: Hypoxia induces re-entry of committed cells into pluripotency. Stem Cells 2013. in press
- [47]Shimada H, Hashimoto Y, Nakada A, Shigeno K, Nakamura T: Accelerated generation of human induced pluripotent stem cells with retroviral transduction and chemical inhibitors under physiological hypoxia. Biochem Biophys Res Commun 2012, 417(2):659-664.
- [48]Watanabe A, Yamada Y, Yamanaka S: Epigenetic regulation in pluripotent stem cells: a key to breaking the epigenetic barrier. Philos Trans R Soc Lond B Biol Sci 2013, 368(1609):20120292.
- [49]Li M, Liu GH, Izpisua Belmonte JC: Navigating the epigenetic landscape of pluripotent stem cells. Nat Rev Mol Cell Biol 2012, 13(8):524-535.
- [50]Pasini A, Bonafè F, Govoni M, Guarnieri C, Morselli PG, Sharma HS, Caldarera CM, Muscari C, Giordano E: Epigenetic signature of early cardiac regulatory genes in native human adipose-derived stem cells. Cell Biochem Biophys 2013. in press
- [51]Thirlwell C, Schulz L, Dibra H, Beck S: Suffocating cancer: hypoxia-associated epimutations as targets for cancer therapy. Clin Epigenetics 2011, 3:9.
- [52]Chen H, Yan Y, Davidson TL, Shinkai Y, Costa M: Hypoxic stress induces dimethylated histone H3 lysine 9 through histone methyltransferase G9a in mammalian cells. Cancer Res 2006, 66(18):9009-9016.
- [53]Hime GR, Somers WG: Micro-RNA mediated regulation of proliferation, self-renewal and differentiation of mammalian stem cells. Cell Adh Migr 2009, 3(4):425-432.
- [54]Hua Z, Lv Q, Ye W, Wong CK, Cai G, Gu D, Ji Y, Zhao C, Wang J, Yang BB, Zhang Y: MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One 2006, 1:e116.
- [55]Takubo K, Suda T: Roles of the hypoxia response system in hematopoietic and leukemic stem cells. Int J Hematol 2012, 95(5):478-483.
- [56]Sugihara E, Saya H: Complexity of cancer stem cells. Int J Cancer 2013, 132(6):1249-1259.
- [57]Heddleston JM, Li Z, Lathia JD, Bao S, Hjelmeland AB, Rich JN: Hypoxia inducible factors in cancer stem cells. Br J Cancer 2010, 102(5):789-795.
- [58]Bernhard EJ: Interventions that induce modifications in the tumor microenvironment. Cancer Radiother 2011, 15(5):376-382.
- [59]Sortwell CE, Pitzer MR, Collier TJ: Time course of apoptotic cell death within mesencephalic cell suspension grafts: implications for improving grafted dopamine neuron survival. Exp Neurol 2000, 165(2):268-277.
- [60]Costa AD, Garlid KD: Intramitochondrial signaling: interactions among mitoKATP, PKCε, ROS, and MPT. Am J Physiol Heart Circ Physiol 2008, 295(2):H874-H882.
- [61]Muscari C, Bonafè F, Gamberini C, Giordano E, Lenaz G, Caldarera CM: Ischemic preconditioning preserves proton leakage from mitochondrial membranes but not oxidative phosphorylation during heart reperfusion. Cell Biochem Funct 2006, 24(6):511-518.
- [62]Wang JA, Chen TL, Jiang J, Shi H, Gui C, Luo RH, Xie XJ, Xiang MX, Zhang X: Hypoxic preconditioning attenuates hypoxia/reoxygenation-induced apoptosis in mesenchymal stem cells. Acta Pharmacol Sin 2008, 29(1):74-82.
- [63]Chacko SM, Ahmed S, Selvendiran K, Kuppusamy ML, Khan M, Kuppusamy P: Hypoxic preconditioning induces the expression of prosurvival and proangiogenic markers in mesenchymal stem cells. Am J Physiol Cell Physiol 2010, 299(6):C1562-C1570.
- [64]Haider HK, Ashraf M: Strategies to promote donor cell survival: combining preconditioning approach with stem cell transplantation. J Mol Cell Cardiol 2008, 45(4):554-566.
- [65]Kubo M, Li TS, Suzuki R, Shirasawa B, Morikage N, Ohshima M, Qin SL, Hamano K: Hypoxic preconditioning increases survival and angiogenic potency of peripheral blood mononuclear cells via oxidative stress resistance. Am J Physiol Heart Circ Physiol 2008, 294(2):H590-H595.
- [66]Peterson KM, Aly A, Lerman A, Lerman LO, Rodriguez-Porcel M: Improved survival of mesenchymal stromal cell after hypoxia preconditioning: role of oxidative stress. Life Sci 2011, 88(1–2):65-73.
- [67]Rosová I, Dao M, Capoccia B, Link D, Nolta JA: Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells 2008, 26(8):2173-2182.
- [68]Haider HK, Ashraf M: Preconditioning and stem cell survival. J Cardiovasc Transl Res 2010, 3(2):89-102.
- [69]Jaussaud J, Biais M, Calderon J, Chevaleyre J, Duchez P, Ivanovic Z, Couffinhal T, Barandon L: Hypoxia-preconditioned mesenchymal stromal cells improve cardiac function in a swine model of chronic myocardial ischaemia. Eur J Cardiothorac Surg 2013, 43(5):1050-1057.
- [70]Li JH, Zhang N, Wang JA: Improved anti-apoptotic and anti-remodeling potency of bone marrow mesenchymal stem cells by anoxic pre-conditioning in diabetic cardiomyopathy. J Endocrinol Invest 2008, 31(2):103-110.
- [71]Leroux L, Descamps B, Tojais NF, Séguy B, Oses P, Moreau C, Daret D, Ivanovic Z, Boiron JM, Lamazière JM, Dufourcq P, Couffinhal T, Duplàa C: Hypoxia preconditioned mesenchymal stem cells improve vascular and skeletal muscle fiber regeneration after ischemia through a Wnt4-dependent pathway. Mol Ther 2010, 18(8):1545-1552.
- [72]Liu H, Liu S, Li Y, Wang X, Xue W, Ge G, Luo X: The role of SDF-1-CXCR4/CXCR7 axis in the therapeutic effects of hypoxia-preconditioned mesenchymal stem cells for renal ischemia/reperfusion injury. PLoS One 2012, 7(4):e34608.
- [73]Yu X, Lu C, Liu H, Rao S, Cai J, Liu S, Kriegel AJ, Greene AS, Liang M, Ding X: Hypoxic preconditioning with cobalt of bone marrow mesenchymal stem cells improves cell migration and enhances therapy for treatment of ischemic acute kidney injury. PLoS One 2013, 8(5):e62703.
- [74]Daneau G, Boidot R, Martinive P, Feron O: Identification of cyclooxygenase-2 as a major actor of the transcriptomic adaptation of endothelial and tumor cells to cyclic hypoxia: effect on angiogenesis and metastases. Clin Cancer Res 2010, 16(2):410-419.
- [75]Ivan M, Harris AL, Martelli F, Kulshreshtha R: Hypoxia response and microRNAs: no longer two separate worlds. J Cell Mol Med 2008, 12(5A):1426-1431.
- [76]Kim HW, Haider HK, Jiang S, Ashraf M: Ischemic preconditioning augments survival of stem cells via miR-210 expression by targeting caspase-8-associated protein 2. J Biol Chem 2009, 284(48):33161-33168.
- [77]Kim HW, Jiang S, Ashraf M, Haider KH: Stem cell-based delivery of Hypoxamir-210 to the infarcted heart: implications on stem cell survival and preservation of infarcted heart function. J Mol Med (Berl) 2012, 90(9):997-1010.
- [78]Fasanaro P, D’Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G, Capogrossi MC, Martelli F: MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem 2008, 283(23):15878-15883.
- [79]Kulshreshtha R, Davuluri RV, Calin GA, Ivan M: A microRNA component of the hypoxic response. Cell Death Differ 2008, 15(4):667-671.
- [80]Kim HW, Mallick F, Durrani S, Ashraf M, Jiang S, Haider KH: Concomitant activation of miR-107/PDCD10 and Hypoxamir-210/Casp8ap2 and their role in cytoprotection during ischemic preconditioning of stem cells. Antioxid Redox Signal 2012, 17(8):1053-1065.
- [81]Tang YL, Zhu W, Cheng M, Chen L, Zhang J, Sun T, Kishore R, Phillips MI, Losordo DW, Qin G: Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circ Res 2009, 104(10):1209-1216.
- [82]Liu H, Xue W, Ge G, Luo X, Li Y, Xiang H, Ding X, Tian P, Tian X: Hypoxic preconditioning advances CXCR4 and CXCR7 expression by activating HIF-1α in MSCs. Biochem Biophys Res Commun 2010, 401(4):509-515.
- [83]Qiang L, Wu T, Zhang HW, Lu N, Hu R, Wang YJ, Zhao L, Chen FH, Wang XT, You QD, Guo QL: HIF-1α is critical for hypoxia-mediated maintenance of glioblastoma stem cells by activating Notch signaling pathway. Cell Death Differ 2012, 19(2):284-294.
- [84]Xing F, Okuda H, Watabe M, Kobayashi A, Pai SK, Liu W, Pandey PR, Fukuda K, Hirota S, Sugai T, Wakabayshi G, Koeda K, Kashiwaba M, Suzuki K, Chiba T, Endo M, Mo YY, Watabe K: Hypoxia-induced Jagged2 promotes breast cancer metastasis and self-renewal of cancer stem-like cells. Oncogene 2011, 30(39):4075-4086.
- [85]Coetzee WA: Multiplicity of effectors of the cardioprotective agent, diazoxide. Pharmacol Ther 2013. in press
- [86]Han JS, Wang HS, Yan DM, Wang ZW, Han HG, Zhu HY, Li XM: Myocardial ischaemic and diazoxide preconditioning both increase PGC-1alpha and reduce mitochondrial damage. Acta Cardiol 2010, 65(6):639-644.
- [87]Costa AD, Quinlan CL, Andrukhiv A, West IC, Jabůrek M, Garlid KD: The direct physiological effects of mitoK(ATP) opening on heart mitochondria. Am J Physiol Heart Circ Physiol 2006, 290(1):H406-H415.
- [88]Afzal MR, Haider HK, Idris NM, Jiang S, Ahmed RP, Ashraf M: Preconditioning promotes survival and angiomyogenic potential of mesenchymal stem cells in the infarcted heart via NF-kappaB signaling. Antioxid Redox Signal 2010, 12(6):693-702.
- [89]Niagara MI, Haider HK, Jiang S, Ashraf M: Pharmacologically preconditioned skeletal myoblasts are resistant to oxidative stress and promote angiomyogenesis via release of paracrine factors in the infarcted heart. Circ Res 2007, 100(4):545-555.
- [90]Przybylski M: A review of the current research on the role of bFGF and VEGF in angiogenesis. J Wound Care 2009, 18(12):516-619.
- [91]Byrne AM, Bouchier-Hayes DJ, Harmey JH: Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J Cell Mol Med 2005, 9(4):777-794.
- [92]Breen EC: VEGF in biological control. J Cell Biochem 2007, 102(6):1358-1367.
- [93]Musilli C, Karam JP, Paccosi S, Muscari C, Mugelli A, Montero-Menei CN, Parenti A: Pharmacologically active microcarriers for endothelial progenitor cell support and survival. Eur J Pharm Biopharm 2012, 81(3):609-616.
- [94]Penna C, Perrelli MG, Karam JP, Angotti C, Muscari C, Montero-Menei CN, Pagliaro P: Pharmacologically active microcarriers influence VEGF-A effects on mesenchymal stem cell survival. J Cell Mol Med 2013, 17(1):192-204.
- [95]Muscari C, Gamberini C, Carboni M, Basile I, Farruggia G, Bonafè F, Giordano E, Caldarera CM, Guarnieri C: Different expression of NOS isoforms in early endothelial progenitor cells derived from peripheral and cord blood. J Cell Biochem 2007, 102(4):992-1001.
- [96]Muscari C, Gamberini C, Basile I, Bonafé F, Valgimigli S, Capitani O, Guarnieri C, Caldarera CM: Comparison between culture conditions improving growth and differentiation of blood and bone marrow cells committed to the endothelial cell lineage. Biol Proced Online 2010, 12(1):9023.
- [97]Tepper OM, Capla JM, Galiano RD, Ceradini DJ, Callaghan MJ, Kleinman ME, Gurtner GC: Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells. Blood 2005, 105(3):1068-1077.
- [98]Ye L, Zhang S, Greder L, Dutton J, Keirstead SA, Lepley M, Zhang L, Kaufman D, Zhang J: Effective cardiac myocyte differentiation of human induced pluripotent stem cells requires VEGF. PLoS One 2013, 8(1):e53764.
- [99]Zhao X, Yang Z, Liang G, Wu Z, Peng Y, Joseph DJ, Inan S, Wei H: Dual effects of isoflurane on proliferation, differentiation, and survival in human neuroprogenitor cells. Anesthesiology 2013, 118(3):537-549.
- [100]Sakata H, Narasimhan P, Niizuma K, Maier CM, Wakai T, Chan PH: Interleukin 6-preconditioned neural stem cells reduce ischaemic injury in stroke mice. Brain 2012, 135(Pt 11):3298-3310.
- [101]Lucchinetti E, Zeisberger SM, Baruscotti I, Wacker J, Feng J, Zaugg K, Dubey R, Zisch AH, Zaugg M: Stem cell-like human endothelial progenitors show enhanced colony-forming capacity after brief sevoflurane exposure: preconditioning of angiogenic cells by volatile anesthetics. Anesth Analg 2009, 109(4):1117-1126.
- [102]Noiseux N, Borie M, Desnoyers A, Menaouar A, Stevens LM, Mansour S, Danalache BA, Roy DC, Jankowski M, Gutkowska J: Preconditioning of stem cells by oxytocin to improve their therapeutic potential. Endocrinology 2012, 153(11):5361-5372.
- [103]Liu XB, Chen H, Chen HQ, Zhu MF, Hu XY, Wang YP, Jiang Z, Xu YC, Xiang MX, Wang JA: Angiopoietin-1 preconditioning enhances survival and functional recovery of mesenchymal stem cell transplantation. J Zhejiang Univ Sci B 2012, 13(8):616-623.
- [104]Zhang J, Chen GH, Wang YW, Zhao J, Duan HF, Liao LM, Zhang XZ, Chen YD, Chen H: Hydrogen peroxide preconditioning enhances the therapeutic efficacy of Wharton’s Jelly mesenchymal stem cells after myocardial infarction. Chin Med J (Engl) 2012, 125(19):3472-3478.
- [105]Herrmann JL, Wang Y, Abarbanell AM, Weil BR, Tan J, Meldrum DR: Preconditioning mesenchymal stem cells with transforming growth factor-alpha improves mesenchymal stem cell-mediated cardioprotection. Shock 2010, 33(1):24-30.
- [106]Wisel S, Khan M, Kuppusamy ML, Mohan IK, Chacko SM, Rivera BK, Sun BC, Hideg K, Kuppusamy P: Pharmacological preconditioning of mesenchymal stem cells with trimetazidine (1-[2,3,4-trimethoxybenzyl]piperazine) protects hypoxic cells against oxidative stress and enhances recovery of myocardial function in infarcted heart through Bcl-2 expression. J Pharmacol Exp Ther 2009, 329(2):543-550.
- [107]Hoke NN, Salloum FN, Kass DA, Das A, Kukreja RC: Preconditioning by phosphodiesterase-5 inhibition improves therapeutic efficacy of adipose-derived stem cells following myocardial infarction in mice. Stem Cells 2012, 30(2):326-335.
- [108]Cai C, Teng L, Vu D, He JQ, Guo Y, Li Q, Tang XL, Rokosh G, Bhatnagar A, Bolli R: The heme oxygenase 1 inducer (CoPP) protects human cardiac stem cells against apoptosis through activation of the extracellular signal-regulated kinase (ERK)/NRF2 signaling pathway and cytokine release. J Biol Chem 2012, 287(40):33720-33732.
- [109]Fuentealba LC, Obernier K, Alvarez-Buylla A: Adult neural stem cells bridge their niche. Cell Stem Cell 2012, 10(6):698-708.
- [110]Wang YZ, Plane JM, Jiang P, Zhou CJ, Deng W: Concise review: quiescent and active states of endogenous adult neural stem cells: identification and characterization. Stem Cells 2011, 29(6):907-912.
- [111]Burns TC, Verfaillie CM, Low WC: Stem cells for ischemic brain injury: a critical review. J Comp Neurol 2009, 515(1):125-144.
- [112]Schwarz TJ, Ebert B, Lie DC: Stem cell maintenance in the adult mammalian hippocampus: a matter of signal integration? Dev Neurobiol 2012, 72(7):1006-1015.
- [113]Erecińska M, Silver IA: Tissue oxygen tension and brain sensitivity to hypoxia. Respir Physiol 2001, 128(3):263-276.
- [114]Vieira HL, Alves PM, Vercelli A: Modulation of neuronal stem cell differentiation by hypoxia and reactive oxygen species. Prog Neurobiol 2011, 93(3):444-455.
- [115]Pacary E, Legros H, Valable S, Duchatelle P, Lecocq M, Petit E, Nicole O, Bernaudin M: Synergistic effects of CoCl(2) and ROCK inhibition on mesenchymal stem cell differentiation into neuron-like cells. J Cell Sci 2006, 119(Pt13):2667-2678.
- [116]Urao N, Ushio-Fukai M: Redox regulation of stem/progenitor cells and bone marrow niche. Free Radic Biol Med 2013, 54:26-39.
- [117]Katoh S, Mitsui Y, Kitani K, Suzuki T: Hyperoxia induces the differentiated neuronal phenotype of PC12 cells by producing reactive oxygen species. Biochem Biophys Res Commun 1997, 241(2):347-351.
- [118]Hwang AB, Lee SJ: Regulation of life span by mitochondrial respiration: the HIF-1 and ROS connection. Aging (Albany NY) 2011, 3(3):304-310.
- [119]Kanichai M, Ferguson D, Prendergast PJ, Campbell VA: Hypoxia promotes chondrogenesis in rat mesenchymal stem cells: a role for AKT and hypoxia-inducible factor (HIF)-1alpha. J Cell Physiol 2008, 216(3):708-715.
- [120]Murphy CL, Lafont JE, Talma S: Hypoxia-inducible factor 2 alpha is essential for hypoxic induction of the human chondrocyte phenotype. Arthitis Rheum 2007, 56(10):3297-3306.
- [121]Yang DC, Yang MH, Tsai CC, Huang TF, Chen YH, Hung SC: Hypoxia inhibits osteogenesis in human mesenchymal stem cells through direct regulation of RUNX2 by TWIST. PLoS One 2011, 6(9):e23965.
- [122]Studer D, Millan C, Öztürk E, Maniura-Weber K, Zenobi-Wong M: Molecular and biophysical mechanisms regulating hypertrophic differentiation in chondrocytes and mesenchymal stem cells. Eur Cell Mater 2012, 24:118-135.
- [123]Duval E, Baugé C, Andriamanalijaona R, Bénateau H, Leclercq S, Dutoit S, Poulain L, Galéra P, Boumédiene K: Molecular mechanism of hypoxia-induced chondrogenesis and its application in in vivo cartilage tissue engineering. Biomaterials 2012, 33(26):6042-6051.
- [124]Müller J, Benz K, Ahlers M, Gaissmaier C, Mollenhauer J: Hypoxic conditions during expansion culture prime human mesenchymal stromal precursor cells for chondrogenic differentiation in three-dimensional cultures. Cell Transplant 2011, 20(10):1589-1602.
- [125]Muscari C, Bonafè F, Fiumana E, Oranges CM, Pinto V, Caldarera CM, Guarnieri C, Morselli PG: Comparison between stem cells harvested from wet and dry lipoaspirates. Connect Tissue Res 2013, 54(1):34-40.
- [126]Merceron C, Vinatier C, Portron S, Masson M, Amiaud J, Guigand L, Chérel Y, Weiss P, Guicheux J: Differential effects of hypoxia on osteochondrogenic potential of human adipose-derived stem cells. Am J Physiol Cell Physiol 2010, 298(2):C355-C364.
- [127]Malladi P, Xu Y, Chiou M, Giaccia AJ, Longaker MT: Effect of reduced oxygen tension on chondrogenesis and osteogenesis in adipose-derived mesenchymal cells. Am J Physiol Cell Physiol 2006, 290(4):C1139-C1146.
- [128]Wen Z, Zheng S, Zhou C, Wang J, Wang T: Repair mechanisms of bone marrow mesenchymal stem cells in myocardial infarction. J Cell Mol Med 2011, 15(5):1032-1043.
- [129]Chang CP, Chio CC, Cheong CU, Chao CM, Cheng BC, Lin MT: Hypoxic preconditioning enhances the therapeutic potential of the secretome from cultured human mesenchymal stem cells in experimental traumatic brain injury. Clin Sci (Lond) 2013, 124(3):165-176.
- [130]Cheema U, Alekseeva T, Abou-Neel EA, Brown RA: Switching off angiogenic signalling: creating channelled constructs for adequate oxygen delivery in tissue engineered constructs. Eur J Mater 2010, 20:274-280.
- [131]Minamino T: Cardioprotection from ischemia/reperfusion injury: basic and translational research. Circ J 2012, 76(5):1074-1082.
- [132]Penna C, Perrelli MG, Pagliaro P: Mitochondrial pathways, permeability transition pore, and redox signaling in cardioprotection: therapeutic implications. Antioxid Redox Signal 2013, 18(5):556-599.
- [133]Garlid AO, Jaburek M, Jacobs JP, Garlid KD: Mitochondrial reactive oxygen species - Which ROS signals cardioprotection? Am J Physiol Heart Circ Physiol 2013. in press
- [134]Bolli R: The late phase of preconditioning. Circ Res 2000, 87(11):972-983.
- [135]Maurer G: Adenosine as an adjunct to reperfusion in myocardial infarction. Eur Heart J 2006, 27(20):2376-2377.
- [136]Povsic TJ, Najiar SS, Prather K, Zhou J, Adams SD, Zavodni KL, Kelly F, Melton LG, Hasselblad V, Heitner JF, Raman SV, Barsness GW, Patel MR, Kim RJ, Lakatta EG, Harrington RA, Rao SV: EPC mobilization after erythropoietin treatment in acute ST-elevation myocardial infarction: the REVAL EPC substudy. J Thromb Thombolysis 2013. in press
- [137]Karam JP, Muscari C, Montero-Menei CN: Combining adult stem cells and polymeric devices for tissue engineering in infarcted myocardium. Biomaterials 2012, 33(23):5683-5695.
- [138]Govoni M, Lotti F, Biagiotti L, Lannocca M, Pasquinelli G, Valente S, Muscari C, Bonafè F, Caldarera CM, Guarnieri C, Cavalcanti S, Giordano E: An innovative stand-alone bioreactor for the highly reproducible transfer of cyclic mechanical stretch to stem cells cultured in a 3D scaffold. J Tissue Eng Regen Med 2012. in press
- [139]Malda J, Klein TJ, Upton Z: The roles of hypoxia in the in vitro engineering of tissues. Tissue Eng 2007, 13(9):2153-2162.
PDF