期刊论文详细信息
International Journal of Health Geographics
Environmental predictors of West Nile fever risk in Europe
Jan C Semenza4  Véronique Chevalier1  Annie Desbrosse5  Massimiliano Rossi3  Shlomit Paz2  Bertrand Sudre3  Annelise Tran5 
[1] CIRAD, UPR Animal et Gestion Intégrée des Risques, Montpellier, France;Department of Geography and Environmental Studies, University of Haifa, Mt. Carmel, Haifa, Israel;Surveillance and Response Support, European Centre for Disease Prevention and Control, Surveillance and Response Support, Stockholm, Sweden;Head of Health Determinants Programme, Office of the Chief Scientist, European Centre for Disease Prevention and Control, Office of the Chief Scientist, Stockholm, SE-171 83, Sweden;CIRAD, UMR Territoires Environnement Télédétection et Information Spatiale, Montpellier, France
关键词: Risk maps;    Remote sensing;    Arbovirus;    Surveillance;    Temperature;    Epidemiology;    Environmental determinants;    West nile virus;    West nile fever;   
Others  :  1146078
DOI  :  10.1186/1476-072X-13-26
 received in 2014-02-18, accepted in 2014-04-16,  发布年份 2014
PDF
【 摘 要 】

Background

West Nile virus (WNV) is a mosquito-borne pathogen of global public health importance. Transmission of WNV is determined by abiotic and biotic factors. The objective of this study was to examine environmental variables as predictors of WNV risk in Europe and neighboring countries, considering the anomalies of remotely sensed water and vegetation indices and of temperature at the locations of West Nile fever (WNF) outbreaks reported in humans between 2002 and 2013.

Methods

The status of infection by WNV in relationship to environmental and climatic risk factors was analyzed at the district level using logistic regression models. Temperature, remotely sensed Normalized Difference Vegetation Index (NDVI) and Modified Normalized Difference Water Index (MNDWI) anomalies, as well as population, birds’ migratory routes, and presence of wetlands were considered as explanatory variables.

Results

The anomalies of temperature in July, of MNDWI in early June, the presence of wetlands, the location under migratory routes, and the occurrence of a WNF outbreak the previous year were identified as risk factors. The best statistical model according to the Akaike Information Criterion was used to map WNF risk areas in 2012 and 2013. Model validations showed a good level of prediction: area under Receiver Operator Characteristic curve = 0.854 (95% Confidence Interval 0.850-0.856) for internal validation and 0.819 (95% Confidence Interval 0.814-0.823) (2012) and 0.853 (95% Confidence Interval 0.850-0.855) (2013) for external validations, respectively.

Conclusions

WNF incidence is increasing in Europe and WNV is expanding into new areas where it had never been observed before. Our model can be used to direct surveillance activities and public health interventions for the upcoming WNF season.

【 授权许可】

   
2014 Tran et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150403090952964.pdf 1520KB PDF download
Figure 5. 187KB Image download
Figure 4. 183KB Image download
Figure 3. 80KB Image download
Figure 2. 322KB Image download
Figure 1. 74KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Lanciotti RS, Roehrig JT, Deubel V, Smith J, Parker M, Steele K, Crise B, Volpe KE, Crabtree MB, Scherret JH, Hall RA, MacKenzie JS, Cropp CB, Panigrahy B, Ostlund E, Schmitt B, Malkinson M, Banet C, Weissman J, Komar N, Savage HM, Stone W, McNamara T, Gubler DJ: Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 1999, 286(5448):2333-2337.
  • [2]Owen J, Moore F, Panella N, Edwards E, Bru R, Hughes M, Komar N: Migrating birds as dispersal vehicles for West Nile virus. Ecohealth 2006, 3(2):79-85.
  • [3]Campbell GL, Marfin AA, Lanciotti RS, Gubler DJ: West Nile virus. Lancet Infect Dis 2002, 2(9):519-529.
  • [4]Dauphin G, Zientara S, Zeller H, Murgue B: West Nile: worldwide current situation in animals and humans. Comp Immunol Microbiol Infect Dis 2004, 27(5):343-355.
  • [5]Paz S, Semenza JC: Environmental drivers of West Nile fever epidemiology in Europe and Western Asia–a review. Int J Environ Res Public Health 2013, 10(8):3543-3562.
  • [6]Tber Abdelhaq A: West Nile fever in horses in Morocco. Bulletin De l'Office International des Epizooties 1996, 108:867-869.
  • [7]Autorino GL, Battisti A, Deubel V, Ferrari G, Forletta R, Giovannini A, Lelli R, Murri S, Scicluna MT: West Nile virus epidemic in horses, Tuscany region Italy. Emerg Infect Dis 2002, 8(12):1372-1378.
  • [8]Savini G, Monaco F, Calistri P, Lelli R: Phylogenetic analysis of West Nile virus isolated in Italy in 2008. Euro surveill 2009, 13(48):1-2.
  • [9]Murgue B, Murri S, Zientara S, Durand B, Durand JP, Zeller H: West Nile outbreak in horses in Southern France, 2000: the return after 35 years. Emerg Infect Dis 2001, 7(4):692-696.
  • [10]Hubalek Z, Halouzka J, Juricova Z: West Nile fever in Czechland. Emerg Infect Dis 1999, 5(4):594-595.
  • [11]European Center for Disese Prevention and Control (ECDC): West Nile fever maps. [http://www.ecdc.europa.eu/en/healthtopics/west_nile_fever/west-nile-fever-maps/pages/index.aspx webcite]. Updated: November 6, 2013
  • [12]Paz S, Malkinson D, Green MS, Tsioni G, Papa A, Danis K, Sirbu A, Ceianu C, Katalin K, Ferenczi E, Zeller H, Semenza JC: Permissive summer temperatures of the 2010 European West Nile fever upsurge. PLoS One 2013, 8(2):e56398.
  • [13]Ozdenerol E, Taff GN, Akkus C: Exploring the spatio-temporal dynamics of reservoir hosts, vectors, and human hosts of West Nile virus: a review of the recent literature. Int J Environ Res Public Health 2013, 10(11):5399-5432.
  • [14]May FJ, Davis CT, Tesh RB, Barrett AD: Phylogeography of West Nile virus: from the cradle of evolution in Africa to Eurasia, Australia, and the Americas. J Virol 2011, 85(6):2964-2974.
  • [15]Soverow JE, Wellenius GA, Fisman DN, Mittleman MA: Infectious disease in a warming world: how weather influenced West Nile virus in the United States (2001–2005). Environ Health Perspect 2009, 117(7):1049-1052.
  • [16]Gibbs SEJ, Wimberly MC, Madden M, Masour J, Yabsley MJ, Stallknecht DE: Factors affecting the geographic distribution of West Nile virus in Georgia, USA: 2002–2004. Vector Borne Zoonot 2006, 6(1):73-82.
  • [17]Reisen WK, Fang Y, Martinez VM: Effects of temperature on the transmission of West Nile virus by Culex tarsalis (Diptera : Culicidae). J Med Entomol 2006, 43(2):309-317.
  • [18]Kunkel KE, Novak RJ, Lampman RL, Gu W: Modeling the impact of variable climatic factors on the crossover of culex restauns and Culex pipiens (Diptera: culicidae), vectors of West Nile virus in Illinois. Am J Trop Med Hyg 2006, 74(1):168-173.
  • [19]Liu A, Lee V, Galusha D, Slade MD, Diuk-Wasser M, Andreadis T, Scotch M, Rabinowitz PM: Risk factors for human infection with West Nile virus in connecticut: a multi-year analysis. Int J Health Geogr 2009, 8:67.
  • [20]Chen CC, Jenkins E, Epp T, Waldner C, Curry PS, Soos C: Climate change and West Nile virus in a highly endemic region of North America. Int J Environ Res Public Health 2013, 10(7):3052-3071.
  • [21]Reisen WK, Fang Y, Lothrop HD, Martinez VM, Wilson J, Oconnor P, Carney R, Cahoon-Young B, Shafii M, Brault AC: Overwintering of West Nile virus in Southern California. J Med Entomol 2006, 43(2):344-355.
  • [22]Shaman J, Day JF, Stieglitz M: Drought-induced amplification and epidemic transmission of West Nile virus in southern Florida. J Med Entomol 2005, 42(2):134-141.
  • [23]Shelite TR, Rogers CM, Litzner BR, Johnson RR, Schneegurt MA: West Nile virus antibodies in permanent resident and overwintering migrant birds in south-central Kansas. Vector Borne Zoonotic Dis 2008, 8(3):321-329.
  • [24]Tesh RB, Parsons R, Siirin M, Randle Y, Sargent C, Guzman H, Wuithiranyagool T, Higgs S, Vanlandingham DL, Bala AA, Haas K, Brian Zerinque B: Year-round West Nile virus activity, Gulf Coast region Texas and Louisiana. Emerg Infect Dis 2004, 10(9):1649-1652.
  • [25]Monaco F, Savini G, Calistri P, Polci A, Pinoni C, Bruno R, Lelli R: 2009 West Nile disease epidemic in Italy: first evidence of overwintering in Western Europe? Res Vet Sci 2011, 91(2):321-326.
  • [26]Leblond A, Sandoz A, Lefebvre G, Zeller H, Bicout DJ: Remote sensing based identification of environmental risk factors associated with West Nile disease in horses in Camargue France. Prev Vet Med 2007, 79(1):20-31.
  • [27]Chase JM, Knight TM: Drought-induced mosquito outbreaks in wetlands. Ecol Lett 2003, 6(11):1017-1024.
  • [28]Paz S, Malkinson D, Green MS, Tsioni G, Papa A, Danis K, Sirbu A, Ceianu C, Krisztalovics K, Csohán A, Emőke F, Zeller H, Semenza J: West Nile Fever Upsurge in Europe and its Neighbouring Countries and its Possible Association with Elevated Temperatures. In Proceedings of the GRF One Health Summit: 2012. Switzerland: Davos; 2012:170-173.
  • [29]Frost MJ, Zhang J, Edmonds JH, Prow NA, Gu X, Davis R, Hornitzky C, Arzey KE, Finlaison D, Hick P, Read A, Hobson-Peters J, May FJ, Doggett SL, Haniotis J, Russell RC, Hall RA, Khromykh AA, Kirkland PD: Characterization of virulent West Nile virus Kunjin strain, Australia, 2011. Emerg Infect Dis 2012, 18(5):792-800.
  • [30]Shaman J, Stieglitz M, Stark C, Le Blancq S, Cane M: Using a dynamic hydrology model to predict mosquito abundances in flood and swamp water. Emerg Infect Dis 2002, 8(1):6-13.
  • [31]DeGroote JP, Sugumaran R, Brend SM, Tucker BJ, Bartholomay LC: Landscape, demographic, entomological, and climatic associations with human disease incidence of West Nile virus in the state of Iowa USA. Int J Health Geogr 2008, 7:19.
  • [32]Kalluri S, Gilruth P, Rogers D, Szczur M: Surveillance of arthropod vector-borne infectious diseases using remote sensing techniques: A review. Plos Pathogens 2007, 3(10):1361-1371.
  • [33]Lambin EF, Tran A, Vanwambeke SO, Linard C, Soti V: Pathogenic landscapes: interactions between land, people, disease vectors, and their animal hosts. Int J Health Geogr 2010, 9:54.
  • [34]Chuang TW, Wimberly MC: Remote Sensing of Climatic Anomalies and West Nile Virus Incidence in the Northern Great Plains of the United States. Plos One 2012, 7(10):e46882.
  • [35]Kwan JL, Park BK, Carpenter TE, Ngo V, Civen R, Reisen WK: Comparison of enzootic risk measures for predicting West Nile disease, Los Angeles, California, USA, 2004–2010. Emerg Infect Dis 2012, 18(8):1298-1306.
  • [36]Global infections diseases and epidemiology online network (GIDEON) [http://www.gideononline.com/ webcite]. Updated: May 6, 2014
  • [37]EUROSTAT: Nomenclature of territorial units for statistics. 2012. [http://epp.eurostat.ec.europa.eu/portal/page/portal/nuts_nomenclature/introduction webcite]. Updated: November 9, 2012.
  • [38]NASA, Socioeconomic Data and Application Centre (SEDAC): Gridded population of the world (gpw), v3. [http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-density webcite]
  • [39]SE European Bird Migration Network: Migration flyways of western paleartic passerines. [http://www.seen-net.eu/ webcite]
  • [40]The Ramsar Convention of Wetlands: Ramsar information information service. [http://www.ramsar.org webcite]
  • [41]Global Lakes and Wetlands Database [http://www.ramsar.org webcite]
  • [42]Calistri P, Ippoliti C, Candeloro L, Benjelloun A, El Harrak M, Bouchra B, Danzetta ML, Di Sabatino D, Conte A: Analysis of climatic and environmental variables associated with the occurrence of West Nile virus in Morocco. Prev Vet Med 2013, 110(3–4):549-553.
  • [43]Epstein PR: West Nile virus and the climate. J Urban Health 2001, 78(2):367-371.
  • [44]Kilpatrick AM, Meola MA, Moudy RM, Kramer LD: Temperature, viral genetics, and the transmission of West Nile virus by Culex pipiens mosquitoes. PLoS Pathog 2008, 4(6):e1000092.
  • [45]Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L: The ncep/ncar 40-year reanalysis project. Bull Am Meteorol Soc 1996, 77:437-471.
  • [46]NOAA: NOAANCEP-NCAR CDAS-1 Monthly Diagnostic Surface temp: Temperature Data. [http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP-NCAR/.CDAS-1/.MONTHLY/.Diagnostic/.surface/.temp/ webcite]. Updated: May 2, 2014
  • [47]Ward MP: Equine West Nile virus disease occurrence and the Normalized Difference Vegetation Index. Prev Vet Med 2009, 88(3):205-212.
  • [48]Xu HQ: Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing 2006, 27(14):3025-3033.
  • [49]Colditz RR, Conrad C, Wehrmann T, Schmidt M, Dech S: TiSeG: A Flexible Software Tool for Time-Series Generation of MODIS Data Utilizing the Quality Assessment Science Data Set. Ieee T Geosci Remote 2008, 46(10):3296-3308.
  • [50]Burnham K, Anderson D: Multi model inference understanding AIC and BIC in model selection. Sociological Methods & Res 2004, 33(2):261-304.
  • [51]Park SH, Goo JM, Jo CH: Receiver operating characteristic (ROC) curve: practical review for radiologists. Korean J Radiol 2004, 5(1):11-18.
  • [52]The R Development Core Team: R: A language and environment for statistical computing. Vienna: Austria: R: Foundation for Statistical Computing; 2008.
  文献评价指标  
  下载次数:9次 浏览次数:8次