期刊论文详细信息
Journal of Biological Engineering
Dual effects of single-walled carbon nanotubes coupled with near-infrared radiation on Bacillus anthracis spores: inactivates spores and stimulates the germination of surviving spores
Liju Yang2  Branislav Vlahovic1  Marvin Wu1  Yongan Tang1  Xiuli Dong2 
[1] Department of Mathematics and Physics, North Carolina Central University, Durham, NC 27707, USA;Biomanufacturing Research Institute and Technology Enterprise (BRITE) and Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA
关键词: Gene expression;    Dipicolinic acid;    Germination;    Near infrared radiation;    Bacillus anthracis spores;    Single walled carbon nanotubes;   
Others  :  805370
DOI  :  10.1186/1754-1611-7-19
 received in 2013-06-19, accepted in 2013-08-17,  发布年份 2013
PDF
【 摘 要 】

Background

Bacillus anthracis is a pathogen that causes life-threatening disease--anthrax. B. anthracis spores are highly resistant to extreme temperatures and harsh chemicals. Inactivation of B. anthracis spores is important to ensure the environmental safety and public health. The 2001 bioterrorism attack involving anthrax spores has brought acute public attention and triggered extensive research on inactivation of B. anthracis spores. Single-walled carbon nanotubes (SWCNTs) as a class of emerging nanomaterial have been reported as a strong antimicrobial agent. In addition, continuous near infrared (NIR) radiation on SWCNTs induces excessive local heating which can enhance SWCNTs’ antimicrobial effect. In this study, we investigated the effects of SWCNTs coupled with NIR treatment on Bacillus anthracis spores.

Results and discussion

The results showed that the treatment of 10 μg/mL SWCNTs coupled with 20 min NIR significantly improved the antimicrobial effect by doubling the percentage of viable spore number reduction compared with SWCNTs alone treatment (88% vs. 42%). At the same time, SWCNTs-NIR treatment activated the germination of surviving spores and their dipicolinic acid (DPA) release during germination. The results suggested the dual effect of SWCNTs-NIR treatment on B. anthracis spores: enhanced the sporicidal effect and stimulated the germination of surviving spores. Molecular level examination showed that SWCNTs-NIR increased the expression levels (>2-fold) in 3 out of 6 germination related genes tested in this study, which was correlated to the activated germination and DPA release. SWCNTs-NIR treatment either induced or inhibited the expression of 3 regulatory genes detected in this study. When the NIR treatment time was 5 or 25 min, there were 3 out of 7 virulence related genes that showed significant decrease on expression levels (>2 fold decrease).

Conclusions

The results of this study demonstrated the dual effect of SWCNTs-NIR treatment on B. anthracis spores, which enhanced the sporicidal effect and stimulated the germination of surviving spores. SWCNTs-NIR treatment also altered the expression of germination, regulatory, and virulence-related genes in B. anthracis.

【 授权许可】

   
2013 Dong et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708075206462.pdf 1332KB PDF download
Figure 6. 94KB Image download
Figure 5. 86KB Image download
Figure 3. 54KB Image download
Figure 2. 88KB Image download
Figure 1. 79KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]U.S. Environmental Protection Agency (EPA): Assessing health risks from pesticides.   2005. http://www.epa.gov/pesticides/factsheets/riskassess.htm webcite
  • [2]Whitney EAS, Beatty ME, Taylor TH, Weyant R, Sobel J, Arduino MJ, Ashford DA: Inactivation of Bacillus anthracis spores. Emerg Infect Dis 2003, 9:623-627.
  • [3]Kang S, Pinault M, Pfefferle LD, Elimelech M: Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 2007, 23(17):8670-8673.
  • [4]Kang S, Herzberg M, Rodrigues DF, Elimelech M: Antibacterial effects of carbon nanotubes: size does matter! Langmuir 2008, 24:6409-6413.
  • [5]Yang C, Mamouni J, Tang Y, Yang L: Antimicrobial activity of single-walled carbon nanotubes: length effect. Langmuir 2010, 26:16013-16019.
  • [6]Liu SB, Wei L, Hao N, Fang N, Chang MW, Xu R, Yang YH, Chen Y: Sharper and faster “Nano Darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 2009, 3(12):3891-3902.
  • [7]Arias LR, Yang LJ: Inactivation of bacterial pathogens by carbon nanotubes in suspensions. Langmuir 2009, 25(5):3003-3012.
  • [8]Liu S, Ng AK, Xu R, Wei J, Tan CM, Yang Y, Chen Y: Antibacterial action of dispersed single-walled carbon nanotubes on Escherichia coli and Bacillus subtilis investigated by atomic force microscopy. Nanoscale 2010, 2:2744-2750.
  • [9]Dong L, Henderson A, Field C: Antimicrobial activity of single-walled carbon nanotubes suspended in different surfactants. J Nanotechnol 2012.
  • [10]Aferchich K, Lilly M, Yang L: Effect of single-walled carbon nanotubes on Bacillus anthracis cell growth, sporulation, and spore germination. J Nanosci Nanotechnol 2012, 12(5):3821-3830.
  • [11]Lyon DY, Fortner JD, Sayes CM, Colvin VL, Hughe JB: Bacterial cell association and antimicrobial activity of a C60 water suspension. Environ Toxicol Chem 2005, 24(11):2757-2762.
  • [12]Fortner JD, Lyon DY, Sayes CM, Boyd AM, Falkner JC, Hotze EM, Alemany LB, Tao YJ, Guo W, Ausman KD, Colvin VL, Hughes JB: C60 in water: nanocrystal formation and microbial response. Environ Sci Technol 2005, 39:4307-4316.
  • [13]Klaine SJ, Alvares PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR: Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 2008, 27(9):1828-1851.
  • [14]Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJ: Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 2008, 42(18):4591-4602.
  • [15]Gerhardt P, Ribi E: Ultrastructure of the exosporium enveloping spores of Bacillus cereus. J. Bcteriol. 1964, 88:1774-1789.
  • [16]Wang H, Gu L, Lin Y, Lu F, Meziani MJ, Luo PJ, Wang W, Cao L, Sun YP: Unique aggregation of anthrax (Bacillus anthracis) spores by sugar-coated single-walled carbon nanotubes. J Am Chem Soc 2006, 128:13364-13365.
  • [17]Upadhyayula VKK, Deng S, Smith GB, Mitchell MC: Adsorption of Bacillus subtilis on single-walled carbon nanotube aggregates, activated carbon and nanoCeramTM. Water Res 2009, 43:148-156.
  • [18]König K: Multiphoton microscopy in life sciences. J. Microsc. (Oxford) 2000, 200:83-104.
  • [19]Kam NWS, O’Connell M, Wisdom JA, Dai H: Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci U S A 2005, 102:11600-11605.
  • [20]Mamouni J, Tang Y, Wu M, Vlahovic B, Yang L: Single-walled carbon nanotubes couples with near-infrared laser for inactivation of bacterial cells. J Nanosci Nanotechnol 2011, 11:4708-4716.
  • [21]Panchapakesan B, Lu S, Sivakumar K, Teker K, Cesarone G, Wickstrom E: Single wall carbon nanotube nanobomb agents for killing breast cancer cells. Nanobiotechnology 2005, 1(2):133-139.
  • [22]Ajayan PM, Terrones M, de la Guardia A, Huc V, Grobert N, Wei BQ, Lezec H, Ramanath G, Ebbesen TW: Nanotubes in a flash—ignition and reconstruction. Science 2002, 296(5568):705-706.
  • [23]Miyako E, Nagata H, Hirano K, Makita Y, Nakayama K, Hirotsu T: Near-infrared laser-triggered carbon nanohorns for selective elimination of microbes. Nanotechnology 2007, 18:475103-475109.
  • [24]O’Connell MJ, Bachilo SM, Huffman CB, Moore V, Strano MS, Haroz E, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hauge RH: Band gap fluorescence from individual single-walled carbon nanotubes. Science 2002, 26(297):593-596.
  • [25]Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB: Structure-assigned optical spectra of single-walled carbon nanotubes. Science 2002, 298:2361-2366.
  • [26]Lilly M, Dong X, McCoy E, Yang L: Inactivation of Bacillus anthracis spores by single-walled carbon nanotubes coupled with oxidizing antimicrobial chemicals. Environ Sci Technol 2012, 46:13417-13424.
  • [27]Jones CA, Padula NL, Setlow P: Effect of mechanical abrasion on the viability, disruption and germination of spores of Bacillus subtilis. J Appl Microbiol 2005, 99:1484-1494.
  • [28]Bagyan I, Setlow P: Localization of the cortex lytic enzyme CwlJ in spores of Bacillus subtilis. J Bacteriol 2002, 184:1289-1294.
  • [29]Setlow P: Spore germination. Curr Opin Microbiol 2003, 6:550-556.
  • [30]Keynan A, Evenchik Z: Activation. In The Bacterial Spore. Edited by Gould GW, Hurst A. New York: Academic Press Inc; 1969:359-396.
  • [31]Foster SJ, Johnstone K: The trigger mechanism of bacterial spore germination. in Regulation of procaryotic development. In Regulation of Prokaryotic Development. Edited by Smith I, Slepecky RA, Setlow P. New York: Plenum Publishing Corporation; 1989:89-108.
  • [32]Yi X, Setlow P: Studies of the commitment step in the germination of spores of Bacillus species. J Bacteriol 2010, 192:3424-3433.
  • [33]Shafaat HS, Ponce A: Applications of a rapid endospore viability assay for monitoring UV inactivation and characterizing arctic ice cores. Appl Environ Microbiol 2006, 72:6808-6814.
  • [34]Day WA Jr, Rasmussen SL, Carpenter BM, Peterson SN, Friedlander AM: Microarray analysis of transposon insertion mutations in Bacillus anthracis: global identification of genres required for sporulation and germination. J Bacteriol 2007, 189:3296-3301.
  • [35]Liu Y, Ream A: Sporulation and germination gene expression analysis of Bacillus anthracis Sterne spores in skim milk under heat and different intervention techniques. J Food Sci 2009, 74:M120-124.
  • [36]Paidhungat M, Setlow P: Role of Ger proteins in nutrient and nonnutrient triggering of spore germination in Bacillus subtilis. J Bacteriol 2000, 182:2513-2519.
  • [37]Ross C, Abel-Santos E: The Ger receptor family in sporulating bacteria. Curr Issues Mol Biol 2010, 12:147-158.
  • [38]McCann KP, Robinson C, Sammons RL, Smith DA, Corfe BM: Alanine germinant receptors of Bacillus subtilis. Lett. Appl. Bacteriol. 1996, 23:290-294.
  • [39]Read TD, Peterson SN, Tourasse N, Baillie LW, Paulsen IT, Nelson KE, Tettelin H, Fouts DE, Eisen JA, Gill SR, Holtzapple EK, Okstad OA, Helgason E, Rilstone J, Wu M, Kolonay JF, Beanan MJ, Dodson RJ, Brinkac LM, Gwinn M, DeBoy RT, Madpu R, Daugherty SC, Durkin AS: The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 2003, 423:81-86.
  • [40]Fisher C, Hanna PC: Characterization of Bacillus anthracis germinant receptors in vitro. J Bacteriol 2005, 187:8055-8062.
  • [41]Fouet A: AtxA, a Bacillus anthracis global virulence regulator. Res Microbiol 2010, 161:735-742.
  • [42]Zhao H, Volkov A, Veldore VH, Hoch JA, Varughese KI: Crystal structure of the transcriptional repressor PagR of Bacillus anthracis. Microbiology 2010, 156:385-391.
  • [43]Wilkinson SP, Grove A: Ligand-responsive transcriptional regulation by members of the MarR family of winged helix protein. Curr Issues Mol Biol 2006, 8:51-62.
  • [44]Bergman NH, Anderson EC, Swenson EE, Janes BK, Fisher N, Niemeyer MM, Miyoshi AD, Hanna PC: Transcriptional profiling of Bacillus anthracis during infection of host macrophages. Infect Immun 2007, 75:3434-3444.
  • [45]Zink SD, Burns D: Importance of srtA and srtB for growth of Bacillus anthracis in Macrophages. Infect Immun 2005, 73:5222-5228.
  • [46]Kang S, Mauter MS, Elimelech M: Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent. Environ Sci Technol 2009, 43(7):2648-2653.
  • [47]Saleh NB, Pfefferle LD, Elimelech M: Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes. Environ Sci Technol 2010, 44(7):2412-2418.
  • [48]Kang S, Mauter MS, Elimelech M: Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environ Sci Technol 2008, 42(19):7528-7534.
  • [49]Shvedova AA, Kisin ER, Mercer R, Murria AR, Jonson VJ, Potapovich AI, Taurina Y, Gorelik O, Arepalli S, Schwegler-Berry D, Hubbs AF, Antonini J, Evans DE, Ku BK, Ramsery D, Maynard A, Kagan VE, Castranova V, Baron P: Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 2005, 289:698-708.
  • [50]Yang WW, Ponce A: Rapid endospore viability assay of Clostridium sporogenes spores. Int J Food Microbiol 2009, 133:213-216.
  • [51]Yung PP, Ponce A: Fast sterility assessment by germinable-endospore biodosimetry. Appl Environ Microbiol 2008, 74:7669-7674.
  • [52]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 2001, 25:402-408.
  文献评价指标  
  下载次数:47次 浏览次数:17次