期刊论文详细信息
Journal of Neuroinflammation
Heterotrimeric G protein-dependent WNT-5A signaling to ERK1/2 mediates distinct aspects of microglia proinflammatory transformation
Gunnar Schulte1  Ernest Arenas2  Eva Lindgren1  Juan Carlos Villaescusa2  Javier Becerril-Ortega1  Michaela Brita Christina Kilander1  Jacomijn Petronella Dijksterhuis1  Carina Halleskog1 
[1]Dept. Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Karolinska Institutet, Nanna Svartz väg 2, Stockholm, S-17177, Sweden
[2]Dept. Medical Biochemistry & Biophysics, Sec. Molecular Neurobiology, Karolinska Institutet, Retzius väg 8, Stockholm, S-17177, Sweden
关键词: Neuroinflammation;    Microglia;    Cyclic AMP;    Non-canonical WNT signaling;    MAPK;    Heterotrimeric G proteins;    Frizzled;   
Others  :  1212569
DOI  :  10.1186/1742-2094-9-111
 received in 2011-12-12, accepted in 2012-04-30,  发布年份 2012
PDF
【 授权许可】

   
2012 Halleskog et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150614095935654.pdf 3206KB PDF download
【 参考文献 】
  • [1]van Amerongen R, Nusse R: Towards an integrated view of Wnt signaling in development. Development 2009, 136:3205-3214.
  • [2]Nusse R: Wnts and Hedgehogs: lipid-modified proteins and similarities in signaling mechanisms at the cell surface. Development 2003, 130:5297-5305.
  • [3]Kikuchi A, Yamamoto H, Sato A, Matsumoto S: Wnt5a: its signalling, functions and implication in diseases. Acta Physiol (Oxf) 2012, 204:17-33.
  • [4]Freese JL, Pino D, Pleasure SJ: Wnt signaling in development and disease. Neurobiol Dis 2010, 38:148-153.
  • [5]Malaterre J, Ramsay RG, Mantamadiotis T: Wnt-Frizzled signalling and the many paths to neural development and adult brain homeostasis. Front Biosci 2007, 12:492-506.
  • [6]Inestrosa NC, Arenas E: Emerging roles of Wnts in the adult nervous system. Nat Rev Neurosci 2010, 11:77-86.
  • [7]Schulte G: International Union of Basic and Clinical Pharmacology. LXXX. The Class Frizzled Receptors. Pharmacol Rev 2010, 62:632-667.
  • [8]Schulte G, Bryja V, Rawal N, Castelo-Branco G, Sousa KM, Arenas E: Purified Wnt-5a increases differentiation of midbrain dopaminergic cells and dishevelled phosphorylation. J Neurochem 2005, 92:1550-1553.
  • [9]Wong GT, Gavin BJ, McMahon AP: Differential transformation of mammary epithelial cells by Wnt genes. Mol Cell Biol 1994, 14:6278-6286.
  • [10]Shimizu H, Julius MA, Giarré M, Zheng Z, Brown AM, Kitajewski J: Transformation by Wnt family proteins correlates with regulation of beta-catenin. Cell Growth Differ 1997, 8:1349-1358.
  • [11]Semenov MV, Habas R, Macdonald BT, He X: SnapShot: noncanonical Wnt Signaling Pathways. Cell 2007, 131:1378-7.
  • [12]Gao C, Chen YG: Dishevelled: the hub of Wnt signaling. Cell Signal 2009, 22:717-727.
  • [13]Koval A, Purvanov V, Egger-Adam D, Katanaev VL: Yellow submarine of the Wnt/Frizzled signaling: submerging from the G protein harbor to the targets. Biochem Pharmacol 2011, 82:1311-1319.
  • [14]Ahumada A, Slusarski DC, Liu X, Moon RT, Malbon CC, Wang HY: Signaling of rat Frizzled-2 through phosphodiesterase and cyclic GMP. Science 2002, 298:2006-2010.
  • [15]Slusarski DC, Corces VG, Moon RT: Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature 1997, 390:410-413.
  • [16]Schulte G, Bryja V: The Frizzled family of unconventional G-protein-coupled receptors. Trends Pharmacol Sci 2007, 28:518-525.
  • [17]Kilander M, Dijksterhuis J, Ganji RS, Bryja V, Schulte G: WNT-5A stimulates the GDP/GTP exchange at pertussis toxin-sensitive heterotrimeric G proteins. Cell Signal 2011, 23:550-554.
  • [18]Kilander M, Halleskog C, Schulte G: Purified WNTs differentially activate beta-catenin-dependent and -independent pathways in mouse microglia-like cells. Acta Physiol 2011, 203:363-372.
  • [19]Koval A, Katanaev VL: Wnt3a stimulation elicits G-protein-coupled receptor properties of mammalian Frizzled proteins. Biochem J 2011, 433:435-440.
  • [20]Keshet Y, Seger R: The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. Methods Mol Biol 2010, 661:3-38.
  • [21]Gutkind JS: Regulation of mitogen-activated protein kinase signaling networks by G protein-coupled receptors. Sci STKE 2000, 40:RE1.
  • [22]Dorsam RT, Gutkind JS: G-protein-coupled receptors and cancer. Nat Rev Cancer 2007, 7:79-94.
  • [23]Kettenmann H, Hanisch UK, Noda M, Verkhratsky A: Physiology of microglia. Physiol Rev 2011, 91:461-553.
  • [24]Selcher JC, Atkins CM, Trzaskos JM, Paylor R, Sweatt JD: A necessity for MAP kinase activation in mammalian spatial learning. Learn Mem 1999, 6:478-490.
  • [25]Saura J: Microglial cells in astroglial cultures: a cautionary note. J Neuroinflammation 2007, 4:26. BioMed Central Full Text
  • [26]Kull B, Ferré S, Arslan G, Svenningsson P, Fuxe K, Owman C, Fredholm BB: Reciprocal interactions between adenosine A2A and dopamine D2 receptors in Chinese hamster ovary cells co-transfected with the two receptors. Biochem Pharmacol 1999, 58:1035-1045.
  • [27]Ji RR, Suter MR: p38 MAPK, microglial signaling, and neuropathic pain. Mol Pain 2007, 3:33. BioMed Central Full Text
  • [28]Koistinaho M, Koistinaho J: Role of p38 and p44/42 mitogen-activated protein kinases in microglia. Glia 2002, 40:175-183.
  • [29]Kaminska B, Gozdz A, Zawadzka M, Ellert-Miklaszewska A, Lipko M: MAPK signal transduction underlying brain inflammation and gliosis as therapeutic target. Anat Rec (Hoboken) 2009, 292:1902-1913.
  • [30]Halleskog C, Mulder J, Dahlström J, Mackie K, Hortobágyi T, Tanila H, Kumar Puli L, Färber K, Harkany T, Schulte G: WNT signaling in activated microglia is pro-inflammatory. Glia 2011, 1:119-131.
  • [31]Bryja V, Schulte G, Rawal N, Grahn A, Arenas E: Wnt-5a induces Dishevelled phosphorylation and dopaminergic differentiation via a CK1-dependent mechanism. J Cell Sci 2007, 120:586-595.
  • [32]Bryja V, Schambony A, Cajánek L, Dominguez I, Arenas E, Schulte G: Beta-arrestin and casein kinase 1/2 define distinct branches of non-canonical WNT signalling pathways. EMBO Rep 2008, 9:1244-1250.
  • [33]Milligan G: Principles: extending the utility of [35 S]GTP gamma S binding assays. Trends Pharmacol Sci 2003, 24:87-90.
  • [34]Dejmek J, Säfholm A, Kamp Nielsen C, Andersson T, Leandersson K: Wnt-5a/Ca2+-induced NFAT activity is counteracted by Wnt-5a/Yes-Cdc42-casein kinase 1alpha signaling in human mammary epithelial cells. Mol Cell Biol 2006, 16:6024-6036.
  • [35]Kohn AD, Moon RT: Wnt and calcium signaling: beta-catenin-independent pathways. Cell Calcium 2005, 38:439-446.
  • [36]Bernatik O, Ganji RS, Dijksterhuis J, Konik P, Cervenka I, Polonio T, Krejci P, Schulte G, Bryja V: Sequential activation and inactivation of dishevelled in the Wnt/β-catenin pathway by casein kinases. J Biol Chem 2011, 286:10396-10410.
  • [37]Marinissen MJ, Gutkind JS: G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol Sci 2001, 22:368-376.
  • [38]Lynch MA: The multifaceted profile of activated microglia. Mol Neurobiol 2009, 40:139-156.
  • [39]Sarafi MN, Garcia-Zepeda EA, MacLean JA, Charo IF, Luster AD: Murine monocyte chemoattractant protein (MCP)-5: a novel CC chemokine that is a structural and functional homologue of human MCP-1. J Exp Med 1997, 185:99-109.
  • [40]Opdenakker G, Froyen G, Fiten P, Proost P, Van Damme J: Human monocyte chemotactic protein-3 (MCP-3): molecular cloning of the cDNA and comparison with other chemokines. Biochem Biophys Res Commun 1993, 191:535-542.
  • [41]Marzio R, Mauël J, Betz-Corradin S: CD69 and regulation of the immune function. Immunopharmacol Immunotoxicol 1999, 21:565-582.
  • [42]Hanisch UK: Microglia as a source and target of cytokines. Glia 2002, 40:140-155.
  • [43]Minghetti L, Levi G: Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog Neurobiol 1998, 54:99-125.
  • [44]Choi MS, Cho KS, Shin SM, Ko HM, Kwon KJ, Shin CY, Ko KH: ATP induced microglial cell migration through non-transcriptional activation of matrix metalloproteinase-9. Arch Pharm Res 2010, 33:257-265.
  • [45]Rosenberg GA, Estrada EY, Dencoff JE: Matrix metalloproteinases and TIMPs are associated with blood–brain barrier opening after reperfusion in rat brain. Stroke 1998, 29:2189-2195.
  • [46]Candelario-Jalil E, Yang Y, Rosenberg GA: Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience 2009, 158:983-994.
  • [47]Ii M, Yamamoto H, Adachi Y, Maruyama Y, Shinomura Y: Role of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Exp Biol Med (Maywood) 2006, 231:20-27.
  • [48]Leeman MF, Curran S, Murray GI: The structure, regulation, and function of human matrix metalloproteinase-13. Crit Rev Biochem Mol Biol 2002, 37:149-166.
  • [49]Whitelock JM, Murdoch AD, Iozzo RV, Underwood PA: The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem 1996, 271:10079-10086.
  • [50]Varela-Nallar L, Alfaro IE, Serrano FG, Parodi J, Inestrosa NC: Wingless-type family member 5A (Wnt-5a) stimulates synaptic differentiation and function of glutamatergic synapses. Proc Natl Acad Sci U S A 2010, 107:21164-21169.
  • [51]Zhang D, Hu X, Qian L, O'Callaghan JP, Hong JS: Astrogliosis in CNS pathologies: is there a role for microglia? Mol Neurobiol 2010, 41:232-241.
  • [52]Castelo-Branco G, Sousa KM, Bryja V, Pinto L, Wagner J, Arenas E: Ventral midbrain glia express region-specific transcription factors and regulate dopaminergic neurogenesis through Wnt-5a secretion. Mol Cell Neurosci 2006, 31:251-262.
  • [53]Harterink M, Korswagen HC: Dissecting the Wnt secretion pathway: key questions on the modification and intracellular trafficking of Wnt proteins. Acta Physiol 2012, 204:8-16.
  • [54]Chien AJ, Conrad WH, Moon RT: A Wnt survival guide: from flies to human disease. J Invest Dermatol 2009, 129:1614-1627.
  • [55]De Ferrari GV, Moon RT: The ups and downs of Wnt signaling in prevalent neurological disorders. Oncogene 2006, 25:7545-7553.
  • [56]Yu JM, Jun ES, Jung JS, Suh SY, Han JY, Kim JY, Kim KW, Jung JS: Role of Wnt5a in the proliferation of human glioblastoma cells. Cancer Lett 2007, 257:172-181.
  • [57]Kamino M, Kishida M, Kibe T, Ikoma K, Iijima M, Hirano H, Tokudome M, Chen L, Koriyama C, Yamada K, Arita K, Kishida S: Wnt-5a signaling is correlated with infiltrative activity in human glioma by inducing cellular migration and MMP-2. Cancer Sci 2011, 102:540-548.
  • [58]Morioka T, Baba T, Black KL, Streit WJ: Immunophenotypic analysis of infiltrating leukocytes and microglia in an experimental rat glioma. Acta Neuropathol 1992, 83:590-597.
  • [59]Pukrop T, Klemm F, Hagemann T, Gradl D, Schulz M, Siemes S, Trümper L, Binder C: Wnt 5a signaling is critical for macrophage-induced invasion of breast cancer cell lines. Proc Natl Acad Sci U S A 2006, 103:5454-5459.
  • [60]Pukrop T, Dehghani F, Chuang HN, Lohaus R, Bayanga K, Heermann S, Regen T, Rossum DV, Klemm F, Schulz M, Siam L, Hoffmann A, Trümper L, Stadelmann C, Bechmann I, Hanisch UK, Binder C: Microglia promote colonization of brain tissue by breast cancer cells in a Wnt-dependent way. Glia 2010, 58:1477-1489.
  • [61]Klemm F, Bleckmann A, Siam L, Chuang H, Rietkötter E, Behme D, Schulz M, Schaffrinski M, Schindler S, Trümper L, Kramer F, Beissbarth T, Stadelmann C, Binder C, Pukrop T: {beta}-Catenin-independent WNT signaling in basal-like breast cancer and brain metastasis. Carcinogenesis 2011, 32:434-442.
  • [62]Kawano Y, Kypta R: Secreted antagonists of the Wnt signalling pathway. J Cell Sci 2003, 116:2627-2634.
  • [63]Kilander M, Halleskog C, Schulte G: Purified WNTs differentially activate beta-catenin-dependent and -independent pathways in mouse microglia-like cells. Acta Physiol 2011, 203:363-72.
  文献评价指标  
  下载次数:13次 浏览次数:12次