期刊论文详细信息
Journal of Neuroinflammation
New means to assess neonatal inflammatory brain injury
Gregory A. Lodygensky2  Carina Mallard1  Irene Londono3  Chen Jin3 
[1] Perinatal Center, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 405 30, Sweden;Department of Neuroscience and Pharmacology, Université de Montréal, Montréal, Québec, Canada;Department of Pediatrics, Sainte-Justine Hospital and Research Center, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal H3T 1C5, Québec, Canada
关键词: Inflammation;    Biomarker;    ADC;    MRI;    White matter injury;    Brain injury;   
Others  :  1227045
DOI  :  10.1186/s12974-015-0397-2
 received in 2015-04-07, accepted in 2015-09-10,  发布年份 2015
PDF
【 摘 要 】

Preterm infants are especially vulnerable to infection-induced white matter injury, associated with cerebral palsy, cognitive and psychomotor impairment, and other adverse neurological outcomes. The etiology of such lesions is complex and multifactorial. Furthermore, timing and length of exposure to infection also influence neurodevelopmental outcomes. Different mechanisms have been posited to mediate the observed brain injury including microglial activation followed by subsequent release of pro-inflammatory species, glutamate-induced excitotoxicity, and vulnerability of developing oligodendrocytes to cerebral insults. The prevalence of such neurological impairments requires an urgent need for early detection and effective neuroprotective strategies. Accordingly, noninvasive methods of monitoring disease progression and therapy effectiveness are essential. While diagnostic tools using biomarkers from bodily fluids may provide useful information regarding potential risks of developing neurological diseases, the use of magnetic resonance imaging/spectroscopy has emerged as a promising candidate for such purpose. Various pharmacological agents have demonstrated protective effects in the immature brain in animal models; however, few studies have progressed to clinical trials with promising results.

【 授权许可】

   
2015 Jin et al.

【 预 览 】
附件列表
Files Size Format View
20150927090200843.pdf 1898KB PDF download
Fig. 4. 33KB Image download
Fig. 3. 45KB Image download
Fig. 2. 38KB Image download
Fig. 1. 34KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

【 参考文献 】
  • [1]Virchow R: Congenitale encephalitis und myelitis. Archiv f pathol Anat 1867, 38:129-38.
  • [2]Banker BQ, Larroche JC: A form of neonatal anoxic encephalopathy. Arch Neurol 1962, 7:386-410.
  • [3]Volpe JJ: Encephalopathy of prematurity includes neuronal abnormalities. Pediatrics 2005, 116:221-5.
  • [4]Volpe JJ: The encephalopathy of prematurity—brain injury and impaired brain development inextricably intertwined. Sem Pediatr Neurol 2009, 16:167-78.
  • [5]Wu YW, Colford JM: Chorioamnionitis as a risk factor for cerebral palsy: a meta-analysis. JAMA Pediatr 2000, 284:1417-24.
  • [6]Costantine MM, How HY, Coppage K, Maxwell RA, Sibai BM: Does peripartum infection increase the incidence of cerebral palsy in extremely low birthweight infants? Am J Obstetr Gynecol 2007, 196:e6-8.
  • [7]Zanardo V, Vedovato S, Suppiej A, Trevisanuto D, Migliore M, Di Venosa B, Chiarelli S: Histological inflammatory responses in the placenta and early neonatal brain injury. Pediatr Dev Pathol 2008, 11:350-4.
  • [8]Hansen-Pupp I, Hallin A-L, Hellström-Westas L, Cilio C, Berg A-C, Stjernqvist K, Fellman V, Ley D: Inflammation at birth is associated with subnormal development in very preterm infants. Pediatr Res 2008, 64:183-8.
  • [9]Suppiej A, Franzoi M, Vedovato S, Marucco A, Chiarelli S, Zanardo V: Neurodevelopmental outcome in preterm histological chorioamnionitis. Early Hum Dev 2009, 85:187-9.
  • [10]Leviton A, Allred EN, Kuban KCK, Hecht JL, Onderdonk AB, O’Shea TM, Paneth N: Microbiologic and histologic characteristics of the extremely preterm infant’s placenta predict white matter damage and later cerebral palsy. The ELGAN study. Pediatr Res 2010, 67:95-101.
  • [11]Andrews WW, Cliver SP, Biasini F, Peralta-Carcelen AM, Rector R, Alriksson-Schmidt AI, Faye-Petersen O, Carlo W, Goldenberg R, Hauth JC: Early preterm birth: association between in utero exposure to acute inflammation and severe neurodevelopmental disability at 6 years of age. Am J Obstetr Gynecol 2008, 198:466.
  • [12]Chau V, Poskitt KJ, McFadden DE, Bowen-Roberts T, Synnes A, Brant R, Sargent MA, Soulikias W, Miller SP: Effect of chorioamnionitis on brain development and injury in premature newborns. Ann Neurol 2009, 66:155-64.
  • [13]Reiman M, Kujari H, Maunu J, Parkkola R, Rikalainen H, Lapinleimu H, Lehtonen L, Haataja L: Does placental inflammation relate to brain lesions and volume in preterm infants? J Pediatr 2008, 152:642-7.
  • [14]Nelson KB, Grether JK, Dambrosia JM, Walsh E, Kohler S, Satyanarayana G, Nelson PG, Dickens BF, Phillips TM: Neonatal cytokines and cerebral palsy in very preterm infants. Pediatr Res 2003, 53:600-7.
  • [15]Lahra MM, Jeffery HE: A fetal response to chorioamnionitis is associated with early survival after preterm birth. Am J Obstetr Gynecol 2004, 190:147-51.
  • [16]Hendson L, Russell L, Robertson CMT, Liang Y, Chen Y, Abdalla A, Lacaze-Masmonteil T: Neonatal and neurodevelopmental outcomes of very low birth weight infants with histologic chorioamnionitis. J Pediatr 2011, 158:397-402.
  • [17]Yoon BH, Kim CJ, Romero R, Jun JK, Park KH, Choi ST, Chi JG: Experimentally induced intrauterine infection causes fetal brain white matter lesions in rabbits. Am J Obstetr Gynecol 1997, 177:797-802.
  • [18]Pang Y, Rodts-Palenik S, Cai Z, Bennett WA, Rhodes PG: Suppression of glial activation is involved in the protection of IL-10 on maternal E. coli induced neonatal white matter injury. Brain Res Dev Brain Res 2005, 157:141-9.
  • [19]Poggi SH, Park J, Toso L, Abebe D, Roberson R, Woodard JE, Spong CY: No phenotype associated with established lipopolysaccharide model for cerebral palsy. Am J Obstetr Gynecol 2005, 192:727-33.
  • [20]Nitsos I, Rees SM, Duncan J, Kramer BW, Harding R, Newnham JP, Moss TJM: Chronic exposure to intra-amniotic lipopolysaccharide affects the ovine fetal brain. J Soc Gynecol Investig 2006, 13:239-47.
  • [21]Cai Z, Pan ZL, Pang Y, Evans OB, Rhodes PG: Cytokine induction in fetal rat brains and brain injury in neonatal rats after maternal lipopolysaccharide administration. Pediatr Res 2000, 47:64-72.
  • [22]Hava G, Vered L, Yael M, Mordechai H, Mahoud H: Alterations in behavior in adult offspring mice following maternal inflammation during pregnancy. Dev Psychobiol 2006, 48:162-8.
  • [23]Mallard C, Welin A-K, Peebles D, Hagberg H, Kjellmer I: White matter injury following systemic endotoxemia or asphyxia in the fetal sheep. Neurochem Res 2003, 28:215-23.
  • [24]Lodygensky GA, Kunz N, Perroud E, Somm E, Mlynarik V, Hüppi PS, Gruetter R, Sizonenko SV: Definition and quantification of acute inflammatory white matter injury in the immature brain by MRI/MRS at high magnetic field. Pediatr Res 2013, 75:415-23.
  • [25]Cai Z, Pang Y, Lin S, Rhodes PG: Differential roles of tumor necrosis factor-α and interleukin-1 β in lipopolysaccharide-induced brain injury in the neonatal rat. Brain Res 2003, 975:37-47.
  • [26]Tissières P, Ochoda A, Dunn-Siegrist I, Drifte G, Morales M, Pfister R, Berner M, Pugin J: Innate immune deficiency of extremely premature neonates can be reversed by interferon-γ. PLoS One 2012, 7:e32863.
  • [27]Melville JM, Moss TJM: The immune consequences of preterm birth. Front Neurosci 2013, 7:79.
  • [28]Shane AL, Stoll BJ: Neonatal sepsis: progress towards improved outcomes. J Infect 2014, 68(Suppl 1):S24-32.
  • [29]Lavoie PM, Huang Q, Jolette E, Whalen M, Nuyt AM, Audibert F, Speert DP, Lacaze-Masmonteil T, Soudeyns H, Kollmann TR: Profound lack of interleukin (IL)-12/IL-23p40 in neonates born early in gestation is associated with an increased risk of sepsis. J Infect Dis 2010, 202:1754-63.
  • [30]Strunk T, Currie A, Richmond P, Simmer K, Burgner D: Innate immunity in human newborn infants: prematurity means more than immaturity. J Matern Fetal Neonatal Med 2011, 24:25-31.
  • [31]Carr R: Neutrophil production and function in newborn infants. Br J Haematol 2000, 110:18-28.
  • [32]Strunk T, Prosser A, Levy O, Philbin V, Simmer K, Doherty D, Charles A, Richmond P, Burgner D, Currie A: Responsiveness of human monocytes to the commensal bacterium Staphylococcus epidermidis develops late in gestation. Pediatr Res 2012, 72:10-8.
  • [33]Shen C-M, Lin S-C, Niu D-M, Kou YR: Development of monocyte Toll-like receptor 2 and Toll-like receptor 4 in preterm newborns during the first few months of life. Pediatr Res 2013, 73:685-91.
  • [34]Schultz C, Rott C, Temming P, Schlenke P, Möller JC, Bucsky P: Enhanced interleukin-6 and interleukin-8 synthesis in term and preterm infants. Pediatr Res 2002, 51:317-22.
  • [35]Dammann O, Phillips TM, Allred EN, O’Shea TM, Paneth N, Van Marter LJ, Bose C, Ehrenkranz RA, Bednarek FJ, Naples M, Leviton A: ELGAN study Investigators: Mediators of fetal inflammation in extremely low gestational age newborns. Cytokine 2001, 13:234-9.
  • [36]Nanthakumar N, Meng D, Goldstein AM, Zhu W, Lu L, Uauy R, Llanos A, Claud EC, Walker WA: The mechanism of excessive intestinal inflammation in necrotizing enterocolitis: an immature innate immune response. PLoS One 2011, 6:e17776.
  • [37]Adib-Conquy M, Cavaillon J-M: Compensatory anti-inflammatory response syndrome. Thromb Haemost 2009, 101:36-47.
  • [38]Schultz C, Temming P, Bucsky P, Göpel W, Strunk T, Härtel C: Immature anti-inflammatory response in neonates. Clin Exp Immunol 2004, 135:130-6.
  • [39]Maheshwari A, Schelonka RL, Dimmitt RA, Carlo WA, Munoz-Hernandez B, Das A, McDonald SA, Thorsen P, Skogstrand K, Hougaard DM, Higgins RD: for the Eunice Kennedy Shriver National Institute of Child Health, Network HDNR: Cytokines associated with necrotizing enterocolitis in extremely-low-birth-weight infants. Pediatr Res 2014, 76:100-8.
  • [40]Chalak LF, Sánchez PJ, Adams-Huet B, Laptook AR, Heyne RJ, Rosenfeld CR: Biomarkers for severity of neonatal hypoxic-ischemic encephalopathy and outcomes in newborns receiving hypothermia therapy. J Pediatr 2014, 164:468-74.
  • [41]Mallard C: Innate immune regulation by toll-like receptors in the brain. ISRN Neurol 2012, 2012:701950-19.
  • [42]Gutierrez EG, Banks WA, Kastin AJ: Murine tumor necrosis factor alpha is transported from blood to brain in the mouse. J Neuroimmunol 1993, 47:169-76.
  • [43]Banks WA, Kastin AJ, Gutierrez EG: Penetration of interleukin-6 across the murine blood–brain barrier. Neurosci Lett 1994, 179:53-6.
  • [44]Leviton A: Preterm birth and cerebral palsy: is tumor necrosis factor the missing link? Dev Med Child Neurol 1993, 35:553-8.
  • [45]Banks WA, Ortiz L, Plotkin SR, Kastin AJ: Human interleukin (IL) 1 alpha, murine IL-1 alpha and murine IL-1 beta are transported from blood to brain in the mouse by a shared saturable mechanism. J Pharmacol Exp Ther 1991, 259:988-96.
  • [46]Smith PLP, Hagberg H, Naylor AS, Mallard C: Neonatal peripheral immune challenge activates microglia and inhibits neurogenesis in the developing murine hippocampus. Dev Neurosci 2014, 36:119-31.
  • [47]Banks WA, Robinson SM: Minimal penetration of lipopolysaccharide across the murine blood–brain barrier. Brain Behav Immun 2010, 24:102-9.
  • [48]Singh AK, Jiang Y: How does peripheral lipopolysaccharide induce gene expression in the brain of rats? Toxicology 2004, 201:197-207.
  • [49]Tao-Cheng JH, Nagy Z, Brightman MW: Tight junctions of brain endothelium in vitro are enhanced by astroglia. J Neurosci 1987, 7:3293-9.
  • [50]Janzer RC, Raff MC: Astrocytes induce blood–brain barrier properties in endothelial cells. Nature 1987, 325:253-7.
  • [51]Daneman R, Zhou L, Kebede AA, Barres BA: Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 2010, 468:562-6.
  • [52]Ek CJ, Dziegielewska KM, Habgood MD, Saunders NR: Barriers in the developing brain and neurotoxicology. Neurotoxicology 2012, 33:586-604.
  • [53]Stolp HB, Dziegielewska KM: Review: role of developmental inflammation and blood–brain barrier dysfunction in neurodevelopmental and neurodegenerative diseases. Neuropathol Appl Neurobiol 2009, 35:132-46.
  • [54]Nagyőszi P, Wilhelm I, Farkas AE, Fazakas C, Dung NTK, Haskó J, Krizbai IA: Expression and regulation of toll-like receptors in cerebral endothelial cells. Neurochem Int 2010, 57:556-64.
  • [55]Chakravarty S, Herkenham M: Toll-like receptor 4 on nonhematopoietic cells sustains CNS inflammation during endotoxemia, independent of systemic cytokines. J Neurosci 2005, 25:1788-96.
  • [56]Gosselin D, RIVEST S: MyD88 signaling in brain endothelial cells is essential for the neuronal activity and glucocorticoid release during systemic inflammation. Mol Psychiatry 2008, 13:480-97.
  • [57]Ganong WF: Circumventricular organs: definition and role in the regulation of endocrine and autonomic function. Clin Exp Pharmacol Physiol 2000, 27:422-7.
  • [58]LAFLAMME N, RIVEST S: Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. FASEB J 2001, 15:155-63.
  • [59]Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW: From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 2008, 9:46-56.
  • [60]Brinker T, Stopa E, Morrison J: A new look at cerebrospinal fluid circulation. Fluids Barriers CNS 2014, 11:10.
  • [61]Stridh L, Ek CJ, Wang X, Nilsson H, Mallard C: Regulation of toll-like receptors in the choroid plexus in the immature brain after systemic inflammatory stimuli. Transl Stroke Res 2013, 4:220-7.
  • [62]D’angelo B, Ek CJ, Sandberg M, Mallard C: Expression of the Nrf2-system at the blood-CSF barrier is modulated by neonatal inflammation and hypoxia-ischemia. J Inherit Metab Dis 2013, 36:479-90.
  • [63]Verney C, Pogledic I, Biran V, Adle-Biassette H, Fallet-Bianco C, Gressens P: Microglial reaction in axonal crossroads is a hallmark of noncystic periventricular white matter injury in very preterm infants. J Neuropathol Exp Neurol 2012, 71:251-64.
  • [64]Baburamani AA, Supramaniam VG, Hagberg H, Mallard C: Microglia toxicity in preterm brain injury. Reprod Toxicol 2014, 48:106-12.
  • [65]Thornton C, Rousset CI, Kichev A, Miyakuni Y, Vontell R, Baburamani AA, Fleiss B, Gressens P, Hagberg H: Molecular mechanisms of neonatal brain injury. Neurol Res Int 2012, 2012:506320-16.
  • [66]Perry VH, Cunningham C, Holmes C: Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol 2007, 7:161-7.
  • [67]Czeh M, Gressens P, Kaindl AM: The yin and yang of microglia. Dev Neurosci 2011, 33:199-209.
  • [68]Yao L, Kan EM, Lu J, Hao A, Dheen ST, Kaur C, Ling E-A: Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia. J Neuroinflammation 2013, 10:23.
  • [69]Ivacko JA, Sun R, Silverstein FS: Hypoxic-ischemic brain injury induces an acute microglial reaction in perinatal rats. Pediatr Res 1996, 39:39-47.
  • [70]Dommergues M-A, Plaisant F, Verney C, Gressens P: Early microglial activation following neonatal excitotoxic brain damage in mice: a potential target for neuroprotection. Neuroscience 2003, 121:619-28.
  • [71]Eklind S, Mallard C, Arvidsson P, Hagberg H: Lipopolysaccharide induces both a primary and a secondary phase of sensitization in the developing rat brain. Pediatr Res 2005, 58:112-6.
  • [72]Hickey E, Shi H, Van Arsdell G, Askalan R: Lipopolysaccharide-induced preconditioning against ischemic injury is associated with changes in toll-like receptor 4 expression in the rat developing brain. Pediatr Res 2011, 70:10-4.
  • [73]Destot-Wong K-D, Liang K, Gupta SK, Favrais G, Schwendimann L, Pansiot J, Baud O, Spedding M, Lelièvre V, Mani S, Gressens P: The AMPA receptor positive allosteric modulator, S18986, is neuroprotective against neonatal excitotoxic and inflammatory brain damage through BDNF synthesis. Neuropharmacology 2009, 57:277-86.
  • [74]Wu X, Zhu D, Jiang X, Okagaki P, Mearow K, Zhu G, McCall S, Banaudha K, Lipsky RH, Marini AM: AMPA protects cultured neurons against glutamate excitotoxicity through a phosphatidylinositol 3-kinase-dependent activation in extracellular signal-regulated kinase to upregulate BDNF gene expression. J Neurochem 2004, 90:807-18.
  • [75]Manning SM, Talos DM, Zhou C, Selip DB, Park H-K, Park C-J, Volpe JJ, Jensen FE: NMDA receptor blockade with memantine attenuates white matter injury in a rat model of periventricular leukomalacia. J Neurosci 2008, 28:6670-8.
  • [76]Khwaja O, Volpe JJ: Pathogenesis of cerebral white matter injury of prematurity. Arch Dis Child Fetal Neonatal Ed 2008, 93:F153-61.
  • [77]Segovia KN, McClure M, Moravec M, Luo NL, Wan Y, Gong X, Riddle A, Craig A, Struve J, Sherman LS, Back SA: Arrested oligodendrocyte lineage maturation in chronic perinatal white matter injury. Ann Neurol 2008, 63:520-30.
  • [78]Riddle A, Dean J, Buser JR, Gong X, Maire J, Chen K, Ahmad T, Cai V, Nguyen T, Kroenke CD, Hohimer AR, Back SA: Histopathological correlates of magnetic resonance imaging–defined chronic perinatal white matter injury. Ann Neurol 2011, 70:493-507.
  • [79]Buser JR, Maire J, Riddle A, Gong X, Nguyen T, Nelson K, Luo NL, Ren J, Struve J, Sherman LS, Miller SP, Chau V, Hendson G, Ballabh P, Grafe MR, Back SA: Arrested preoligodendrocyte maturation contributes to myelination failure in premature infants. Ann Neurol 2012, 71:93-109.
  • [80]Goldenberg RL, Hauth JC, Andrews WW: Intrauterine infection and preterm delivery. N Engl J Med 2000, 342:1500-7.
  • [81]Yoon BH, Jun JK, Romero R, Park KH, Gomez R, Choi JH, Kim IO: Amniotic fluid inflammatory cytokines (interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha), neonatal brain white matter lesions, and cerebral palsy. Am J Obstetr Gynecol 1997, 177:19-26.
  • [82]Duggan PJ, Maalouf EF, Watts TL, Sullivan MH, Counsell SJ, Allsop J, Al-Nakib L, Rutherford MA, Battin M, Roberts I, Edwards AD: Intrauterine T-cell activation and increased proinflammatory cytokine concentrations in preterm infants with cerebral lesions. Lancet 2001, 358:1699-700.
  • [83]Yoon BH, Romero R, Park JS, Kim CJ, Kim SH, Choi JH, Han TR: Fetal exposure to an intra-amniotic inflammation and the development of cerebral palsy at the age of three years. Am J Obstetr Gynecol 2000, 182:675-81.
  • [84]Satar M, Turhan E, Yapicioglu H, Narli N, Ozgunen FT, Cetiner S: Cord blood cytokine levels in neonates born to mothers with prolonged premature rupture of membranes and its relationship with morbidity and mortality. Eur Cytokine Netw 2008, 19:37-41.
  • [85]Rocha G, Proença E, Guedes A, Carvalho C, Areias A, Ramos JP, Rodrigues T, Guimarães H: Cord blood levels of IL-6, IL-8 and IL-10 may be early predictors of bronchopulmonary dysplasia in preterm newborns small for gestational age. Dis Markers 2012, 33:51-60.
  • [86]An H, Nishimaki S, Ohyama M, Haruki A, Naruto T, Kobayashi N, Sugai T, Kobayashi Y, Mori M, Seki K, Yokota S: Interleukin-6, interleukin-8, and soluble tumor necrosis factor receptor-I in the cord blood as predictors of chronic lung disease in premature infants. Am J Obstetr Gynecol 2004, 191:1649-54.
  • [87]Takao D, Ibara S, Tokuhisa T, Ishihara C, Maede Y, Matsui T, Tokumasu H, Sato K, Hirakawa E, Kabayama C, Yamamoto M: Predicting onset of chronic lung disease using cord blood cytokines. Pediatr Int 2014, 56:566-70.
  • [88]Hecht JL, Fichorova RN, Tang VF, Allred EN, McElrath TF, Leviton A: ELGAN study Investigators: Relationship between neonatal blood protein concentrations and placenta histologic characteristics in extremely low GA newborns. Pediatr Res 2011, 69:68-73.
  • [89]Kuban KCK, O’Shea TM, Allred EN, Paneth N, Hirtz D, Fichorova RN, Leviton A: ELGAN study Investigators: Systemic inflammation and cerebral palsy risk in extremely preterm infants. J Child Neurol 2014, 29:1692-8.
  • [90]Ellison VJ, Mocatta TJ, Winterbourn CC, Darlow BA, Volpe JJ, Inder TE: The relationship of CSF and plasma cytokine levels to cerebral white matter injury in the premature newborn. Pediatr Res 2005, 57:282-6.
  • [91]Panigrahy A, Wisnowski JL, Furtado A, Lepore N, Paquette L, Bluml S: Neuroimaging biomarkers of preterm brain injury: toward developing the preterm connectome. Pediatr Radiol 2012, 42:33-61.
  • [92]Maalouf EF, Duggan PJ, Counsell SJ, Rutherford MA, Cowan F, Azzopardi D, Edwards AD: Comparison of findings on cranial ultrasound and magnetic resonance imaging in preterm infants. Pediatrics 2001, 107:719-27.
  • [93]O’Shea TM, Counsell SJ, Bartels DB, Dammann O: Magnetic resonance and ultrasound brain imaging in preterm infants. Early Hum Dev 2005, 81:263-71.
  • [94]van Wezel-Meijler G, Steggerda SJ, Leijser LM: Cranial ultrasonography in neonates: role and limitations. Semin Perinatol 2010, 34:28.
  • [95]Miller SP, Cozzio CC, Goldstein RB, Ferriero DM, Partridge JC, Vigneron DB, Barkovich AJ: Comparing the diagnosis of white matter injury in premature newborns with serial MR Imaging and transfontanel ultrasonography findings. AJNR Am J Neuroradiol 2003, 24:1661-9.
  • [96]Inder TE, Anderson NJ, Spencer C, Wells S, Volpe JJ: White matter injury in the premature infant: a comparison between serial cranial sonographic and MR findings at term. AJNR Am J Neuroradiol 2003, 24:805-9.
  • [97]Ciambra G, Arachi S, Protano C, Cellitti R, Caoci S, Di Biasi C, Gualdi G, De Curtis M: Accuracy of transcranial ultrasound in the detection of mild white matter lesions in newborns. Neuroradiol J 2013, 26:284-9.
  • [98]Mirmiran M, Barnes PD, Keller K, Constantinou JC, Fleisher BE, Hintz SR, Ariagno RL: Neonatal brain magnetic resonance imaging before discharge is better than serial cranial ultrasound in predicting cerebral palsy in very low birth weight preterm infants. Pediatrics 2004, 114:992-8.
  • [99]Woodward LJ, Anderson PJ, Austin NC, Howard K, Inder TE: Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med 2006, 355:685-94.
  • [100]Giustetto P, Filippi M, Castano M, Terreno E. Non-invasive parenchymal, vascular and metabolic high-frequency ultrasound and photoacoustic rat deep brain imaging. J Vis Exp 2015. doi: 10.3791/52162
  • [101]Guevara E, Berti R, Londono I, Xie N, Bellec P, Lesage F, Lodygensky GA: Imaging of an inflammatory injury in the newborn rat brain with photoacoustic tomography. PLoS One 2013, 8:e83045.
  • [102]Mento G, Bisiacchi PS: Neurocognitive development in preterm infants: insights from different approaches. Neurosci Biobehav Rev 2012, 36:536-55.
  • [103]Shany E, Berger I: Neonatal electroencephalography: review of a practical approach. J Child Neurol 2011, 26:341-55.
  • [104]El-Dib M, Chang T, Tsuchida TN, Clancy RR: Amplitude-integrated electroencephalography in neonates. Pediatr Neurol 2009, 41:315-26.
  • [105]Dean JM, van de Looij Y, Sizonenko SV, Lodygensky GA, Lazeyras F, Bolouri H, Kjellmer I, Hüppi PS, Hagberg H, Mallard C: Delayed cortical impairment following lipopolysaccharide exposure in preterm fetal sheep. Ann Neurol 2011, 70:846-56.
  • [106]Keogh MJ, Bennet L, Drury PP, Booth LC, Mathai S, Naylor AS, Fraser M, Gunn AJ: Subclinical exposure to low-dose endotoxin impairs EEG maturation in preterm fetal sheep. Am J Physiol Regul Integr Comp Physiol 2012, 303:R270-8.
  • [107]Watanabe K, Hayakawa F, Okumura A: Neonatal EEG: a powerful tool in the assessment of brain damage in preterm infants. Brain and Development 1999, 21:361-72.
  • [108]Maruyama K, Okumura A, Hayakawa F, Kato T: Prognostic value of EEG depression in preterm infants for later development of cerebral palsy. Neuropediatrics 2002, 33:133.
  • [109]Baud O, d’Allest A-M, Lacaze-Masmonteil T, Zupan V, Nedelcoux H, Boithias C, Delaveaucoupet J, Dehan M: The early diagnosis of periventricular leukomalacia in premature infants with positive rolandic sharp waves on serial electroencephalography. The J Pediatr 1998, 132:813-7.
  • [110]Okumura A, Hayakawa F, Kato T, Maruyama K, Kubota T, Suzuki M, Kidokoro H, Kuno K, Watanabe K: Abnormal sharp transients on electroencephalograms in preterm infants with periventricular leukomalacia. The J Pediatr 2003, 143:26-30.
  • [111]Shah DK, de Vries LS, Hellström-Westas L, Toet MC, Inder TE: Amplitude-integrated electroencephalography in the newborn: a valuable tool. Pediatrics 2008, 122:863-5.
  • [112]Wikström S, Ley D, Hansen-Pupp I, Rosén I, Hellström-Westas L: Early amplitude-integrated EEG correlates with cord TNF-α and brain injury in very preterm infants. Acta Paediatr 2008, 97:915-9.
  • [113]Lodygensky GA, Vasung L, Sizonenko SV, Hüppi PS: Neuroimaging of cortical development and brain connectivity in human newborns and animal models. J Anat 2010, 217:418-28.
  • [114]Lodygensky GA, West T, Stump M, Holtzman DM, Inder TE, Neil JJ: In vivo MRI analysis of an inflammatory injury in the developing brain. Brain Behav Immun 2010, 24:759-67.
  • [115]Nanba Y, Matsui K, Aida N, Sato Y, Toyoshima K, Kawataki M, Hoshino R, Ohyama M, Itani Y, Goto A, Oka A: Magnetic resonance imaging regional T1 abnormalities at term accurately predict motor outcome in preterm infants. Pediatrics 2007, 120:e10-9.
  • [116]Miller SP, Ferriero DM, Leonard C, Piecuch R, Glidden DV, Partridge JC, Perez M, Mukherjee P, Vigneron DB, Barkovich AJ: Early brain injury in premature newborns detected with magnetic resonance imaging is associated with adverse early neurodevelopmental outcome. The J Pediatr 2005, 147:609-16.
  • [117]Chau V, Brant R, Poskitt KJ, Tam EWY, Synnes A, Miller SP: Postnatal infection is associated with widespread abnormalities of brain development in premature newborns. Pediatr Res 2012, 71:274-9.
  • [118]Norris DG, Niendorf T, Hoehn-Berlage M, Kohno K, Schneider EJ, Hainz P, Hropot M, Leibfritz D: Incidence of apparent restricted diffusion in three different models of cerebral infarction. Magn Reson Imaging 1994, 12:1175-82.
  • [119]Tuor UI, Kozlowski P, Del Bigio MR, Ramjiawan B, Su S, Malisza K, Saunders JK: Diffusion- and T2-weighted increases in magnetic resonance images of immature brain during hypoxia-ischemia: transient reversal posthypoxia. Exp Neurol 1998, 150:321-8.
  • [120]Nedelcu J, Klein MA, Aguzzi A, Boesiger P, Martin E: Biphasic edema after hypoxic-ischemic brain injury in neonatal rats reflects early neuronal and late glial damage. Pediatr Res 1999, 46:297-304.
  • [121]McKinstry RC, Miller JH, Snyder AZ, Mathur A, Schefft GL, Almli CR, Shimony JS, Shiran SI, Neil JJ: A prospective, longitudinal diffusion tensor imaging study of brain injury in newborns. Neurology 2002, 59:824-33.
  • [122]Yang F, Sun X, Beech W, Teter B, Wu S, Sigel J, Vinters HV, Frautschy SA, Cole GM: Antibody to caspase-cleaved actin detects apoptosis in differentiated neuroblastoma and plaque-associated neurons and microglia in Alzheimer’s disease. Am J Pathol 1998, 152:379-89.
  • [123]Hendrickson ML, Ling C, Kalil RE: Degeneration of axotomized projection neurons in the rat dLGN: temporal progression of events and their mitigation by a single administration of FGF2. PLoS One 2012, 7:e46918.
  • [124]Lodygensky GA, Menache C, Hüppi PS: Magnetic resonance imaging’s role in the care of the infant at risk for brain injury. In Neurology: neonatology questions and controversies. Edited by Perlman J. Elsevier Health Sciences, Philadelphia; 2011:285-324.
  • [125]Inder T, Hüppi PS, Zientara GP, Maier SE, Jolesz FA, di Salvo D, Robertson R, Barnes PD, Volpe JJ: Early detection of periventricular leukomalacia by diffusion-weighted magnetic resonance imaging techniques. J Pediatr 1999, 134:631-4.
  • [126]Lodygensky GA, Marques JP, Maddage R, Perroud E, Sizonenko SV, Hüppi PS, Gruetter R: In vivo assessment of myelination by phase imaging at high magnetic field. Neuroimage 2012, 59:1979-87.
  • [127]Song AW: Diffusion modulation of the fMRI signal: early investigations on the origin of the BOLD signal. Neuroimage 2012, 62:949-52.
  • [128]Favrais G, van de Looij Y, Fleiss B, Ramanantsoa N, Bonnin P, Stoltenburg Didinger G, Lacaud A, Saliba E, Dammann O, Gallego J, Sizonenko S, Hagberg H, Lelièvre V, Gressens P: Systemic inflammation disrupts the developmental program of white matter. Ann Neurol 2011, 70:550-65.
  • [129]Counsell SJ, Allsop JM, Harrison MC, Larkman DJ, Kennea NL, Kapellou O, Cowan FM, Hajnal JV, Edwards AD, Rutherford MA: Diffusion-weighted imaging of the brain in preterm infants with focal and diffuse white matter abnormality. Pediatrics 2003, 112:1-7.
  • [130]Maalouf EF, Duggan PJ, Rutherford MA, Counsell SJ, Fletcher AM, Battin M, Cowan F, Edwards AD: Magnetic resonance imaging of the brain in a cohort of extremely preterm infants. J Pediatr 1999, 135:351-7.
  • [131]Tkác I, Rao R, Georgieff MK, Gruetter R: Developmental and regional changes in the neurochemical profile of the rat brain determined by in vivo 1H NMR spectroscopy. Magn Reson Med 2003, 50:24-32.
  • [132]Lodygensky GA, Inder TE, Neil JJ: Application of magnetic resonance imaging in animal models of perinatal hypoxic-ischemic cerebral injury. Int J Dev Neurosci 2008, 26:13-25.
  • [133]López-Villegas D, Lenkinski RE, Wehrli SL, Ho WZ, Douglas SD: Lactate production by human monocytes/macrophages determined by proton MR spectroscopy. Magn Reson Med 1995, 34:32-8.
  • [134]Groenendaal F, Veenhoven RH, van der Grond J, Jansen GH, Witkamp TD, de Vries LS: Cerebral lactate and N-acetyl-aspartate/choline ratios in asphyxiated full-term neonates demonstrated in vivo using proton magnetic resonance spectroscopy. Pediatr Res 1994, 35:148-51.
  • [135]Barkovich AJ, Baranski K, Vigneron D, Partridge JC, Hallam DK, Hajnal BL, Ferriero DM: Proton MR spectroscopy for the evaluation of brain injury in asphyxiated, term neonates. AJNR Am J Neuroradiol 1999, 20:1399-405.
  • [136]Girard S, Tremblay L, Lepage M, Sébire G: Early detection of placental inflammation by MRI enabling protection by clinically relevant IL-1Ra administration. Am J Obstetr Gynecol 2012, 206:358.
  • [137]Drobyshevsky A, Prasad PV. Placental perfusion in uterine ischemia model as evaluated by dynamic contrast enhanced MRI. J Magn Reson Imaging. 2015:n/a–n/a
  • [138]Linduska N, Dekan S, Messerschmidt A, Kasprian G, Brugger PC, Chalubinski K, Weber M, Prayer D: Placental pathologies in fetal MRI with pathohistological correlation. Placenta 2009, 30:555-9.
  • [139]Sohlberg S, Mulic-Lutvica A, Olovsson M, Weis J, Axelsson O, Wikström J, Wikström A-K. MRI estimated placental perfusion in fetal growth assessment. Ultrasound Obstet Gynecol. 2015:n/a–n/a.
  • [140]Cagnin A, Kassiou M, Meikle SR, Banati RB: Positron emission tomography imaging of neuroinflammation. Neurotherapeutics 2007, 4:443-52.
  • [141]Hannestad J, Gallezot J-D, Schafbauer T, Lim K, Kloczynski T, Morris ED, Carson RE, Ding Y-S, Cosgrove KP: Endotoxin-induced systemic inflammation activates microglia: [ 11 C]PBR28 positron emission tomography in nonhuman primates. Neuroimage 2012, 63:232-9.
  • [142]Girard S, Sébire H, Brochu M-E, Briota S, Sarret P, Sébire G: Postnatal administration of IL-1Ra exerts neuroprotective effects following perinatal inflammation and/or hypoxic-ischemic injuries. Brain Behav Immun 2012, 26:1331-9.
  • [143]Opal SM, Fisher CJ, Dhainaut J-FA, Vincent J-L, Brase R, Lowry SF, Sadoff JC, Slotman GJ, Levy H, Balk RA, Shelly MP, Pribble JP, LaBrecque JF, Lookabaugh J, Donovan H, Dubin H, Baughman R, Norman J, DeMaria E, Matzel K, Abraham E, Seneff M: Confirmatory interleukin-1 receptor antagonist trial in severe sepsis: a phase III, randomized, doubleblind, placebo-controlled, multicenter trial. Crit Care Med 1997, 25:1115.
  • [144]Li S-J, Liu W, Wang J-L, Zhang Y, Zhao D-J, Wang T-J, Li Y-Y: The role of TNF-α, IL-6, IL-10, and GDNF in neuronal apoptosis in neonatal rat with hypoxic-ischemic encephalopathy. Eur Rev Med Pharmacol Sci 2014, 18:905-9.
  • [145]Gonzalez P, Burgaya F, Acarin L, Peluffo H, Castellano B, Gonzalez B: Interleukin-10 and interleukin-10 receptor-I are upregulated in glial cells after an excitotoxic injury to the postnatal rat brain. J Neuropathol Exp Neurol 2009, 68:391-403.
  • [146]Wallace KL, Lopez J, Shaffery JP, Wells A, Paul IA, Bennett WA: Interleukin-10/Ceftriaxone prevents E. coli-induced delays in sensorimotor task learning and spatial memory in neonatal and adult Sprague–Dawley rats. Brain Res Bull 2010, 81:141-8.
  • [147]Mittal R, Gonzalez-Gomez I, Panigrahy A, Goth K, Bonnet R, Prasadarao NV: IL-10 administration reduces PGE-2 levels and promotes CR3-mediated clearance of Escherichia coli K1 by phagocytes in meningitis. J Exp Med 2010, 207:1307-19.
  • [148]Mesples B, Plaisant F, Gressens P: Effects of interleukin-10 on neonatal excitotoxic brain lesions in mice. Brain Res Dev Brain Res 2003, 141:25-32.
  • [149]Rodts-Palenik S, Wyatt-Ashmead J, Pang Y, Thigpen B, Cai Z, Rhodes P, Martin JN, Granger J, Bennett WA: Maternal infection-induced white matter injury is reduced by treatment with interleukin-10. Am J Obstetr Gynecol 2004, 191:1387-92.
  • [150]Lechpammer M, Manning SM, Samonte F, Nelligan J, Sabo E, Talos DM, Volpe JJ, Jensen FE: Minocycline treatment following hypoxic/ischaemic injury attenuates white matter injury in a rodent model of periventricular leucomalacia. Neuropathol Appl Neurobiol 2008, 34:379-93.
  • [151]Cai Z, Lin S, Fan L-W, Pang Y, Rhodes PG: Minocycline alleviates hypoxic–ischemic injury to developing oligodendrocytes in the neonatal rat brain. Neuroscience 2006, 137:425-35.
  • [152]Fan L-W, Pang Y, Lin S, Rhodes PG, Cai Z: Minocycline attenuates lipopolysaccharide-induced white matter injury in the neonatal rat brain. Neuroscience 2005, 133:159-68.
  • [153]Zhu F, Zheng Y, Ding Y-Q, Liu Y, Zhang X, Wu R, Guo X, Zhao J: Minocycline and risperidone prevent microglia activation and rescue behavioral deficits induced by neonatal intrahippocampal injection of lipopolysaccharide in rats. PLoS One 2014, 9:e93966.
  • [154]Fan LW, Pang Y, Lin S, Tien LT, Ma T, Rhodes PG, Cai Z: Minocycline reduces lipopolysaccharide-induced neurological dysfunction and brain injury in the neonatal rat. J Neurosci Res 2005, 82:71-82.
  • [155]Filipovic R, Zecevic N: Neuroprotective role of minocycline in co-cultures of human fetal neurons and microglia. Exp Neurol 2008, 211:41-51.
  • [156]Robertson NJ, Faulkner S, Fleiss B, Bainbridge A, Andorka C, Price D, Powell E, Lecky-Thompson L, Thei L, Chandrasekaran M, Hristova M, Cady EB, Gressens P, Golay X, Raivich G: Melatonin augments hypothermic neuroprotection in a perinatal asphyxia model. Brain 2013, 136:90-105.
  • [157]Wong C-S, Jow G-M, Kaizaki A, Fan L-W, Tien L-T: Melatonin ameliorates brain injury induced by systemic lipopolysaccharide in neonatal rats. Neuroscience 2014, 267:147-56.
  • [158]Gressens P, Schwendimann L, Husson I, Sarkozy G, Mocaer E, Vamecq J, Spedding M: Agomelatine, a melatonin receptor agonist with 5-HT(2C) receptor antagonist properties, protects the developing murine white matter against excitotoxicity. Eur J Pharmacol 2008, 588:58-63.
  • [159]Balduini W, Carloni S, Perrone S, Bertrando S, Tataranno ML, Negro S, Proietti F, Longini M, Buonocore G: The use of melatonin in hypoxic-ischemic brain damage: an experimental study. J Matern Fetal Neonatal Med 2012, 25(Suppl 1):119-24.
  • [160]Guven A, Uysal B, Gundogdu G, Oztas E, Ozturk H, Korkmaz A: Melatonin ameliorates necrotizing enterocolitis in a neonatal rat model. J Pediatr Surg 2011, 46:2101-7.
  • [161]Cekmez F, Cetinkaya M, Tayman C, Canpolat FE, Kafa IM, Uysal S, Tunc T, Sarıcı SÜ: Evaluation of melatonin and prostaglandin E1 combination on necrotizing enterocolitis model in neonatal rats. Regul Pept 2013, 184:121-5.
  • [162]Xiong T, Qu Y, Mu D, Ferriero D: Erythropoietin for neonatal brain injury: opportunity and challenge. Int J Dev Neurosci 2011, 29:583-91.
  • [163]Mohamad O, Chen D, Zhang L, Hofmann C, Wei L, Yu SP: Erythropoietin reduces neuronal cell death and hyperalgesia induced by peripheral inflammatory pain in neonatal rats. Mol Pain 2011, 7:51.
  • [164]Liu W, Shen Y, Plane JM, Pleasure DE, Deng W: Neuroprotective potential of erythropoietin and its derivative carbamylated erythropoietin in periventricular leukomalacia. Exp Neurol 2011, 230:227-39.
  • [165]Juul S: Neuroprotective role of erythropoietin in neonates. J Matern Fetal Neonatal Med 2012, 25(Suppl 4):105-7.
  • [166]Gitto E, Karbownik M, Reiter RJ, Tan DX, Cuzzocrea S, Chiurazzi P, Cordaro S, Corona G, Trimarchi G, Barberi I: Effects of melatonin treatment in septic newborns. Pediatr Res 2001, 50:756-60.
  • [167]Merchant N. Melatonin as a novel neuroprotectant in preterm infants - trial study. ISRCTN registry. DOI 10.1186/isrctn15119574. http://www.isrctn.com/ISRCTN15119574 (2011). Accessed 17 Mar 2015.
  • [168]Merchant NM, Azzopardi DV, Counsell S, Gressens P, Dierl A, Gozar I et al. O-057 Melatonin As A Novel Neuroprotectant In Preterm Infants – A Double Blinded Randomised Controlled Trial (mint Study). Arch Dis Child. 2014;99:A43.
  • [169]Leuchter RH-V, Gui L, Poncet A, Hagmann C, Lodygensky GA, Martin E, Koller B, Darqué A, Bucher HU, Hüppi PS: Association between early administration of high-dose erythropoietin in preterm infants and brain MRI abnormality at term-equivalent age. JAMA 2014, 312:817-24.
  • [170]O’Gorman RL, Bucher HU, Held U, Koller BM, Hüppi PS, Hagmann CF, Swiss EPO: Neuroprotection Trial Group: Tract-based spatial statistics to assess the neuroprotective effect of early erythropoietin on white matter development in preterm infants. Brain 2015, 138:388-97.
  • [171]Barrington KJ: The adverse neuro-developmental effects of postnatal steroids in the preterm infant: a systematic review of RCTs. BMC Pediatr 2001, 1:1.
  • [172]Shinwell ES, Karplus M, Reich D, Weintraub Z, Blazer S, Bader D, Yurman S, Dolfin T, Kogan A, Dollberg S, Arbel E, Goldberg M, Gur I, Naor N, Sirota L, Mogilner S, Zaritsky A, Barak M, Gottfried E: Early postnatal dexamethasone treatment and increased incidence of cerebral palsy. Arch Dis Child Fetal Neonatal Ed 2000, 83:F177-81.
  • [173]Murphy BP, Inder TE, Huppi PS, Warfield S, Zientara GP, Kikinis R, Jolesz FA, Volpe JJ: Impaired cerebral cortical gray matter growth after treatment with dexamethasone for neonatal chronic lung disease. Pediatrics 2001, 107:217-21.
  • [174]Wilson-Costello D, Walsh MC, Langer JC, Guillet R, Laptook AR, Stoll BJ, Shankaran S, Finer NN, Van Meurs KP, Engle WA, Das A: Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network: Impact of postnatal corticosteroid use on neurodevelopment at 18 to 22 months’ adjusted age: effects of dose, timing, and risk of bronchopulmonary dysplasia in extremely low birth weight infants. Pediatrics 2009, 123:e430-7.
  • [175]Lodygensky GA, Rademaker K, Zimine S, Gex-Fabry M, Lieftink AF, Lazeyras F, Groenendaal F, de Vries LS, Hüppi PS: Structural and functional brain development after hydrocortisone treatment for neonatal chronic lung disease. Pediatrics 2005, 116:1-7.
  • [176]Benders MJNL, Groenendaal F, van Bel F, Ha Vinh R, Dubois J, Lazeyras F, Warfield SK, Hüppi PS, de Vries LS: Brain development of the preterm neonate after neonatal hydrocortisone treatment for chronic lung disease. Pediatr Res 2009, 66:555-9.
  • [177]Watterberg KL, Shaffer ML, Mishefske MJ, Leach CL, Mammel MC, Couser RJ, Abbasi S, Cole CH, Aucott SW, Thilo EH, Rozycki HJ, Lacy CB: Growth and neurodevelopmental outcomes after early low-dose hydrocortisone treatment in extremely low birth weight infants. Pediatrics 2007, 120:40-8.
  • [178]Baud O, Alberti C. The PREMILOC Randomized Controlled Trial: early low-dose hydrocortisone improves survival without bronchopulmonary dysplasia in extremely preterm infants. Pediatric Academic Societies Annual Meeting, Baltimore, E-PAS2015:2765.1. http://www.abstracts2view.com/pas/view.php?nu=PAS15L1_2765.1 (2015). Accessed 18 Sep 2015.
  文献评价指标  
  下载次数:4次 浏览次数:2次