期刊论文详细信息
GigaScience
Genomes and virulence difference between two physiological races of Phytophthora nicotianae
Bingguang Xiao5  Yang Dong4  Wen Wang1  Xiao Wang3  Yongping Li5  Dunhuang Fang5  Haiqin Yu5  Xiao Ma2  Hui Liu3 
[1] CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China;Yunnan Agricultural University, Kunming 650100, China;University of Chinese Academy of Sciences, Beijing 100049, China;Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;Yunnan Academy of Tobacco Agricultural Sciences, Yuantong Street No.33, Kunming 650021, Yunnan, China
关键词: RxLR effector;    Hybrid assembly;    Genomes;    Phytophthora nicotianae;    Black shank;   
Others  :  1235765
DOI  :  10.1186/s13742-016-0108-7
 received in 2015-09-15, accepted in 2016-01-06,  发布年份 2016
PDF
【 摘 要 】

Background

Black shank is a severe plant disease caused by the soil-borne pathogen Phytophthora nicotianae. Two physiological races of P. nicotianae, races 0 and 1, are predominantly observed in cultivated tobacco fields around the world. Race 0 has been reported to be more aggressive, having a shorter incubation period, and causing worse root rot symptoms, while race 1 causes more severe necrosis. The molecular mechanisms underlying the difference in virulence between race 0 and 1 remain elusive.

Findings

We assembled and annotated the genomes of P. nicotianae races 0 and 1, which were obtained by a combination of PacBio single-molecular real-time sequencing and second-generation sequencing (both HiSeq and MiSeq platforms). Gene family analysis revealed a highly expanded ATP-binding cassette transporter gene family in P. nicotianae. Specifically, more RxLR effector genes were found in the genome of race 0 than in that of race 1. In addition, RxLR effector genes were found to be mainly distributed in gene-sparse, repeat-rich regions of the P. nicotianae genome.

Conclusions

These results provide not only high quality reference genomes of P. nicotianae, but also insights into the infection mechanisms of P. nicotianae and its co-evolution with the host plant. They also reveal insights into the difference in virulence between the two physiological races.

【 授权许可】

   
2016 Liu et al.

【 预 览 】
附件列表
Files Size Format View
20160205042144945.pdf 1688KB PDF download
Fig. 4. 69KB Image download
Fig. 3. 33KB Image download
Fig. 2. 53KB Image download
Fig. 1. 57KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

【 参考文献 】
  • [1]Lamour K. Phytophthora: a global perspective. CAB International, Knoxville; 2013.
  • [2]Drenth A, Sendall B. Economic impact of Phytophthora diseases in Southeast Asia. Diversity and management of Phytophthora in Southeast Asia. Drenth A, Guest DI, editors. Australian Centre for International Agricultural Research, Canberra, Australia; 2004.
  • [3]Kamoun S, van West P, Vleeshouwers V, de Groot KE, Govers F. Resistance of Nicotiana benthamiana to Phytophthora infestans is mediated by the recognition of the elicitor protein INF1. Plant Cell. 1998; 10:1413-1426.
  • [4]Hu JH, Hong CX, Stromberg EL, Moorman GW. Mefenoxam sensitivity and fitness analysis of Phytophthora nicotianae isolates from nurseries in Virginia, USA. Plant Pathol. 2008; 57:728-736.
  • [5]Apple JL. Physiological specialization within Phytophthora parasitica var nicotianae. Phytopathology. 1962; 52:351-354.
  • [6]Li X, Kong F, Li X, Wang J, Zhang C, Feng C et al.. Preliminary Report on Physiological Race of Phytophthora parasitica in Hubei. Chin Tob Sci. 2011; 32:84-88.
  • [7]Sullivan MJ, Melton TA, Shew HD. Fitness of Races 0 and 1 of Phytophthora parasitica var. nicotianae. Plant Dis. 2005; 89:1220-1228.
  • [8]Phytophthora parasitica Assembly Dev initiative, Broad Institute (broadinstitute.org). https://olive.broadinstitute.org/projects/phytophthora_parasitica. Accessed 2 Sept 2015.
  • [9]Doyle J, Doyle JL. Genomic plant DNA preparation from fresh tissue-CTAB method. Phytochem Bull. 1987; 19:11-15.
  • [10]Au KF, Underwood JG, Lee L, Wong WH. Improving PacBio long read accuracy by short read alignment. PLoS One. 2012; 7:e46679.
  • [11]Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G et al.. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol. 2012; 30:693-700.
  • [12]Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008; 18:821-829.
  • [13]Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol İ. ABySS: a parallel assembler for short read sequence data. Genome Res. 2009; 19:1117-1123.
  • [14]Chu T-C, Lu C-H, Liu T, Lee GC, Li W-H, Shih AC-C. Assembler for de novo assembly of large genomes. Proc Natl Acad Sci USA. 2013; 110:E3417-E3424.
  • [15]Chaisson MJ, Pevzner PA. Short read fragment assembly of bacterial genomes. Genome Res. 2008; 18:324-330.
  • [16]Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS et al.. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012; 19:455-477.
  • [17]Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J et al.. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience. 2012; 1:18. BioMed Central Full Text
  • [18]Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ et al.. A whole-genome assembly of Drosophila. Science. 2000; 287:2196-2204.
  • [19]Treangen TJ, Sommer DD, Angly FE, Koren S, Pop M. Next generation sequence assembly with AMOS. Curr Protoc Bioinformatics 2011;CHAPTER:Unit11.8–Unit11.8.
  • [20]Shan W, Hardham AR. Construction of a bacterial artificial chromosome library, determination of genome size, and characterization of an Hsp70 gene family in Phytophthora nicotianae. Fungal Genet Biol. 2004; 41:369-380.
  • [21]Parra G, Bradnam K, Korf I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics. 2007; 23:1061-1067.
  • [22]Bedell JA, Korf I, Gish W. MaskerAid: a performance enhancement to RepeatMasker. Bioinformatics. 2000; 16:1040-1041.
  • [23]Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 2005; 110:462-467.
  • [24]Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999; 27:573-580.
  • [25]Haas BJ, Kamoun S, Zody MC, Jiang RHY, Handsaker RE, Cano LM et al.. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature. 2009; 461:393-398.
  • [26]Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RHY, Aerts A et al.. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science. 2006; 313:1261-1266.
  • [27]Baxter L, Tripathy S, Ishaque N, Boot N, Cabral A, Kemen E et al.. Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome. Science. 2010; 330:1549-1551.
  • [28]Adhikari BN, Hamilton JP, Zerillo MM, Tisserat N, LÃ vesque CA, Buell CR. Comparative genomics reveals insight into virulence strategies of plant pathogenic oomycetes. PLoS One. 2013; 8:e75072.
  • [29]Lévesque CA, Brouwer H, Cano L, Hamilton JP, Holt C, Huitema E et al.. Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biol. 2010; 11:R73. BioMed Central Full Text
  • [30]Burge C, Karlin S. Prediction of complete gene structures in human genomic DNA. J Mol Biol. 1997; 268:78-94.
  • [31]Stanke M, Steinkamp R, Waack S, Morgenstern B. AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res. 2004; 32:W309-W312.
  • [32]Majoros WH, Pertea M, Salzberg SL. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics. 2004; 20:2878-2879.
  • [33]Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000; 28:27-30.
  • [34]Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 2000; 28:45-48.
  • [35]Le Berre J-Y, Engler G, Panabières F. Exploration of the late stages of the tomato-Phytophthora parasitica interactions through histological analysis and generation of expressed sequence tags. New Phytol. 2008; 177:480-492.
  • [36]Kebdani N, Pieuchot L, Deleury E, Panabieres F, Le Berre J-Y, Gourgues M. Cellular and molecular characterization of Phytophthora parasitica appressorium-mediated penetration. New Phytol. 2010; 185:248-257.
  • [37]Panabières F, Amselem J, Galiana E, Le Berre J-Y. Gene identification in the oomycete pathogen Phytophthora parasitica during in vitro vegetative growth through expressed sequence tags. Fungal Genet Biol. 2005; 42:611-623.
  • [38]Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C et al.. Versatile and open software for comparing large genomes. Genome Biol. 2004; 5:R12. BioMed Central Full Text
  • [39]Wang D, Zhang Y, Zhang Z, Zhu J, Yu J. KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genomics Proteomics Bioinformatics. 2010; 8:77-80.
  • [40]Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003; 13:2178-2189.
  • [41]De Bie T, Cristianini N, Demuth JP, Hahn MW. CAFE: a computational tool for the study of gene family evolution. Bioinformatics. 2006; 22:1269-1271.
  • [42]Higgins CF. ABC transporters: from microorganisms to man. Ann Rev Cell Biol. 1992; 8:67-113.
  • [43]Seidl MF, Van den Ackerveken G, Govers F, Snel B. A domain-centric analysis of oomycete plant pathogen genomes reveals unique protein organization. Plant Physiol. 2011; 155:628-644.
  • [44]Del Sorbo G, Schoonbeek H, De Waard MA. Fungal transporters involved in efflux of natural toxic compounds and fungicides. Fungal Genet Biol. 2000; 30:1-15.
  • [45]Latijnhouwers M, de Wit PJGM, Govers F. Oomycetes and fungi: similar weaponry to attack plants. Trends Microbiol. 2003; 11:462-469.
  • [46]Bailey K, Çevik V, Holton N, Byrne-Richardson J, Sohn KH, Coates M et al.. Molecular cloning of ATR5 Emoy2 from Hyaloperonospora arabidopsidis, an avirulence determinant that triggers RPP5-mediated defense in Arabidopsis. Mol Plant Microbe Interact. 2011; 24:827-838.
  • [47]Win J, Morgan W, Bos J, Krasileva KV, Cano LM, Chaparro-Garcia A et al.. Adaptive evolution has targeted the C-terminal domain of the RXLR effectors of plant pathogenic oomycetes. Plant Cell. 2007; 19:2349-2369.
  • [48]King SRF, McLellan H, Boevink PC, Armstrong MR, Bukharova T, Sukarta O et al.. Phytophthora infestans RXLR effector PexRD2 interacts with host MAPKKKε to suppress plant immune signaling. Plant Cell. 2014; 26:1345-1359.
  • [49]Zheng X, McLellan H, Fraiture M, Liu X, Boevink PC, Gilroy EM et al.. Functionally redundant RXLR effectors from Phytophthora infestans act at different steps to suppress early flg22-triggered immunity. PLoS Pathog. 2014; 10: Article ID e1004057
  • [50]Qiao Y, Shi J, Zhai Y, Hou Y, Ma W. Phytophthora effector targets a novel component of small RNA pathway in plants to promote infection. Proc Natl Acad Sci USA. 2015; 112:5850-5855.
  • [51]Sharma R, Xia X, Cano LM, Evangelisti E, Kemen E, Judelson H et al.. Genome analyses of the sunflower pathogen Plasmopara halstedii provide insights into effector evolution in downy mildews and Phytophthora. BMC Genomics. 2015; 16:741. BioMed Central Full Text
  • [52]Torto TA, Li S, Styer A, Huitema E, Testa A, Gow NAR et al.. EST mining and functional expression assays identify extracellular effector proteins from the plant pathogen Phytophthora. Genome Res. 2003; 13:1675-1685.
  • [53]Stam R, Jupe J, Howden AJM, Morris JA, Boevink PC, Hedley PE et al.. Identification and characterisation CRN effectors in Phytophthora capsici shows modularity and functional diversity. PLoS One. 2013; 8: Article ID e59517
  • [54]Liu H, Ma X, Yu HQ, Fang DH, Wang X, Wang W, et al. Genomic assembled sequences and annotation for Phytophthora nicotianae race 0 and race 1. GigaScience Database. 2016. http://dx.doi.org/10.5524/100174. Accessed date 01 December 2015.
  文献评价指标  
  下载次数:18次 浏览次数:12次