| Fluids and Barriers of the CNS | |
| Brain pericytes increase the lipopolysaccharide-enhanced transcytosis of HIV-1 free virus across the in vitro blood–brain barrier: evidence for cytokine-mediated pericyte-endothelial cell crosstalk | |
| William A Banks2  Shinya Dohgu1  | |
| [1] Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan;Geriatrics Research Education and Clinical Center, Puget Sound Health Care System, Seattle WA and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Bldg 1/Rm 810A, VAPSHCS, 1660 S. Columbian Way, Seattle, WA 98108, USA | |
| 关键词: Lipopolysaccharide; Neuroimmune; Neuroinflammation; AIDS; BMEC; Cytokines; Brain endothelial cells; Pericytes; HIV-1; Blood–brain barrier; | |
| Others : 806559 DOI : 10.1186/2045-8118-10-23 |
|
| received in 2012-11-16, accepted in 2013-06-23, 发布年份 2013 | |
PDF
|
|
【 摘 要 】
Background
Human immunodeficiency virus-1 (HIV-1) enters the brain by crossing the blood–brain barrier (BBB) as both free virus and within infected immune cells. Previous work showed that activation of the innate immune system with lipopolysaccharide (LPS) enhances free virus transport both in vivo and across monolayer monocultures of brain microvascular endothelial cells (BMECs) in vitro.
Methods
Here, we used monocultures and co-cultures of brain pericytes and brain endothelial cells to examine the crosstalk between these cell types in mediating the LPS-enhanced permeation of radioactively-labeled HIV-1 (I-HIV) across BMEC monolayers.
Results
We found that brain pericytes when co-cultured with BMEC monolayers magnified the LPS-enhanced transport of I-HIV without altering transendothelial electrical resistance, indicating that pericytes affected the transcytotic component of HIV-1 permeation. As LPS crosses the BBB poorly if at all, and since pericytes are on the abluminal side of the BBB, we postulated that luminal LPS acts indirectly on pericytes through abluminal secretions from BMECs. Consistent with this, we found that the pattern of secretion of cytokines by pericytes directly exposed to LPS was different than when the pericytes were exposed to the abluminal fluid from LPS-treated BMEC monolayers.
Conclusion
These results are evidence for a cellular crosstalk in which LPS acts at the luminal surface of the brain endothelial cell, inducing abluminal secretions that stimulate pericytes to release substances that enhance the permeability of the BMEC monolayer to HIV.
【 授权许可】
2013 Dohgu and Banks; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140708094403615.pdf | 681KB | ||
| Figure 4. | 69KB | Image | |
| Figure 3. | 54KB | Image | |
| Figure 2. | 87KB | Image | |
| Figure 1. | 43KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Groothuis DR, Levy RM: The entry of antiviral and antiretrovial drugs into the central nervous system. J Neurovirol 1997, 3:387-400.
- [2]Kim RB, Fromm MF, Wandel C, Leake B, Wood AJJ, Roden DM, Wilkinson GR: The drug transporter p-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest 1998, 101:289-294.
- [3]Thomas SA: Anti-HIV drug distribution to the central nervous system. Curr Pharmaceut Des 2004, 10:1313-1324.
- [4]Bansal AK, Mactutus CF, Nath A, Maragos W, Hauser KF, Booze RM: Neurotoxicity of HIV-1 proteins gp120 and Tat in the rat striatum. Brain Res 2000, 879:42-49.
- [5]Benos DJ, McPherson S, Hahn BH, Chaikin MA, Benveniste EN: Cytokines and HIV envelope glycoprotein gp120 stimulate Na+/H+ exchange in astrocytes. J Biol Chem 1994, 269:13811-13816.
- [6]Bottner A, Mehraein P, Weis S: Vascular changes in the cerebral cortex in HIV-1 infection. Acta Neuropathol 1996, 92:35-41.
- [7]Farr SA, Banks WA, Uezu K, Freed EO, Kumar VB, Morley JE: Mechanisms of HIV-1 induced cognitive impairment: evidence for hippocampal cholinergic involvement with overstimulation of the VIPergic system by the viral coat protein core. AIDS Res Hum Retroviruses 2002, 18:1189-1195.
- [8]Fujimura RK, Bockstahler LE, Goodkin K, Werner T, Brack-Werner R, Shapshak P: Neuropathology and virology of HIV associated dementia. Med Virol 1996, 6:141-150.
- [9]Gendelman HE, Zheng J, Coulter CL, Ghorpade A, Che M, Thylin M, Rubocki R, Persidsky Y, Hahn F, Reinhard J Jr, Swindells S: Suppression of inflammatory neurotoxins by highly active antiretroviral therapy in human immunodeficiency virus-associated dementia. J Infect Dis 1998, 178:1000-1007.
- [10]Grossman DM, Banks WA, LeBlanc J, Dejace P: Prevalence of hypernatremia in HIV-infected VA patients. J Invest Med 1998, 46:46A.
- [11]Opp MR, Hughes TK Jr, Smith EM: HIV-1 glycoprotein 120 alters rat sleep. The Physiologist 1994, 37(3):A-50.
- [12]Bagasra O, Lavi E, Bobroski L, Khalili K, Pestaner JP, Tawadros R, Pomerantz RJ: Cellular reservoirs of HIV-1 in the central nervous system of infected individuals: indentification by the combination of in situ polymerase chain reaction and immunohistochemistry. AIDS 1996, 10:573-585.
- [13]Nottet HS, Persidsky Y, Sasseville VG, Nukuna AN, Bock P, Zhai QH, Sharer LR, McComb RD, Swindells S, Soderland C, Gendelman HE: Mechanisms for the transendothelial migration of HIV-1-infected monocytes into brain. J Immunol 1996, 156:1284-1295.
- [14]Persidsky Y, Stins M, Way D, Witte MH, Weinand M, Kim KS, Bock P, Gendelman HE, Fiala M: A model for monocyte migration through the blood–brain barrier during HIV-1 encephalitis. J Immunol 1997, 158:3499-3510.
- [15]Banks WA, Freed EO, Wolf KM, Robinson SM, Franko M, Kumar VB: Transport of human immunodeficiency virus type 1 pseudoviruses across the blood–brain barrier: role of envelope proteins and adsorptive endocytosis. J Virol 2001, 75:4681-4691.
- [16]Anathbandhu C, Yang B, Gendelman HE, Persidsky Y, Kanmogne GD: STAT1 signaling modulates HIV-1-induced inflammatory responses and leukocyte transmigration across the blood–brain barrier. Blood 2007, 111:2062-2072.
- [17]Ramirez SH, Fan S, Dykstra H, Reichenbach N, Del Valle L, Potula R, Phipps RP, Maggirwar SB, Persidsky Y: Dyad of CD40/CD40 ligand fosters neuroinflammation at the blood–brain barrier and is regulated via JNK signaling: implications for HIV-1 encephalitis. J Neurosci 2010, 30:9454-9464.
- [18]Banks WA, Akerstrom V, Kastin AJ: Adsorptive endocytosis mediates the passage of HIV-1 across the blood–brain barrier: evidence for a post-internalization coreceptor. J Cell Sci 1998, 111:533-540.
- [19]Banks WA, Robinson SM, Wolf KM, Bess JW Jr, Arthur LO: Binding, internalization, and membrane incorporation of human immunodeficiency virus-1 at the blood–brain barrier is differentially regulated. Neurosci 2004, 128:143-153.
- [20]Dohgu S, Banks WA: Lipopolysaccharide-enhanced transcellular transport of HIV-1 across the blood–brain barrier is medited by the p38 mitogen-activated protein kinase pathway. Exp Neurol 2008, 210:740-749.
- [21]Nakaoke R, Ryerse JS, Niwa M, Banks WA: Human immunodeficiency virus type 1 transport across the in vitro mouse brain endothelial cell monolayer. Exp Neurol 2005, 193:101-109.
- [22]Dohgu S, Ryerse JS, Robinson SM, Banks WA: Human immunodeficiency virus-1 uses the mannos-6-phosphate receptor to cross the blood–brain barrier. PLOS one 2012, 7:e41623.
- [23]Alonso K, Pontiggia P, Medenica R, Rizzo R: Cytokine patterns in adults with AIDS. Immunol Invest 1997, 26:341-350.
- [24]Chaudhuri A, Duan F, Morsey B, Persidsky Y, Kanmogne GD: HIV-1 activates proinflammatory and interferon-inducible genes in human brain microvascular endothelial cells: putative mechanisms of blood–brain barrier dysfunction. J Cereb Blood Flow Metab 2007, 28:697-711.
- [25]Didier N, Banks WA, Creminon C, Dereuddre-Bosquet N, Mabondzo A: HIV-1-induced production of endothelin-1 in an in vitro model of the human blood–brain barrier. Neuroreport 2002, 13:1179-1183.
- [26]Ulmer AJ, Rietschel ET, Zahringer U, Heine H: Lipopolysaccharide: structure, bioactivity, receptors, and signal transduction. Trends Glycosci Glycotechnol 2002, 14:53-68.
- [27]Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, Kazzaz Z, Bornstein E, Lambotte O, Altmann D, et al.: Microbial translocation is a cause of systemic immune activation in chronic HIV injection. Nature Med 2006, 12:1365-1371.
- [28]Laye S, Parnet P, Goujon E, Dantzer R: Peripheral administration of lipopolysaccharide induces the expression of cytokine transcripts in the brain and pituitary of mice. Brain Res 1994, 27:157-162.
- [29]Banks WA: Physiology and pathophysiology of the blood–brain barrier: Implications for microbial pathogenesis, drug delivery and neurodegenerative disorders. J Neurovirol 1999, 5:538-555.
- [30]Banks WA, Dohgu S, Nakaoke R, Lynch JL, Fleegal-DeMotta MA, Erickson MA, Vo TQ: Nitric oxide isoenzymes regulate LPS-enhanced insulin transport across the blood–brain barrier. Endocrinol 2008, 149:1514-1523.
- [31]Nonaka N, Shioda S, Banks WA: Effect of lipopolysaccharide on the transport of pituitary adenylate cyclase activating polypeptide across the blood–brain barrier. Exp Neurol 2005, 191:137-144.
- [32]Xaio H, Banks WA, Niehoff ML, Morley JE: Effect of LPS on the permeability of the blood–brain barrier to insulin. Brain Res 2001, 896:36-42.
- [33]Hartz AMS, Bauer B, Fricker G, Miller DS: Rapid modulation of P-glycoprotein-mediated transport at the blood–brain barrier by tumor necrosis factor-alpha and lipopolysaccharide. Molec Pharmacol 2006, 69:462-470.
- [34]Jaeger JB, Dohgu S, Lynch JL, Fleegal-DeMotta MA, Banks WA: Effects of lipopolysaccharide on the blood–brain barrier transport of amyloid beta protein: a mechanism for inflammation in the progression of Alzheimer's disease. Brain Behav, Immunity 2009, 23:507-517.
- [35]Salkeni MA, Lynch JL, Price TO, Banks WA: Lipopolysaccharide impairs blood–brain barrier P-glycoprotein function in mice through prostaglandin- and nitric oxide-independent pathways and nitric oxide-independent pathways. J Neuroimmune Pharmacology. J Neuroimmune Pharmacol 2009, 4:276-282.
- [36]Reyes TM, Fabry Z, Coe CL: Brain endothelial cell production of a neuroprotective cytokine, interleukin-6, in response to noxious stimuli. Brain Res 1999, 851:215-220.
- [37]Verma S, Nakaoke R, Dohgu S, Banks WA: Release of cytokines by brain endothelial cells: a polarized response to lipopolysaccharide. Brain Behav, Immunity 2006, 20:449-455.
- [38]Andras IE, Pu H, Deli MA, Nath A, Hennig B, Toborek M: HIV-1 Tat protein alters tight junction protein expression and distribution in cultured brain endothelial cells. J Neurosci Res 2003, 74:255-265.
- [39]Annunziata P: Blood–brain barrier changes during invasion of the central nervous system. J Neurol 2003, 250:901-906.
- [40]Kanmogne GD, Primeaux C, Grammas P: HIV-1 gp120 proteins alter tight junction protein expression and brain endothelial cell permability: implications for the pathogenesis of HIV-associated dementia. J Neuropathol Exper Neurol 2005, 64:498-505.
- [41]Hayashi K, Pu H, Andras IE, Eum SY, Yamauchi A, Henning B, Toborek M: HIV-TAT protein upregulates expressin of multidrug resistance protein 1 in the blood–brain barrier. J Cereb Blood Flow and Metab 2006, 26:1052-1065.
- [42]Persidsky Y, Zheng J, Miller D, Gendelman HE: Mononuclear phagocytes mediate blood–brain barrier compromise and neuronal injury during HIV-1-associated dementia. J Leukocyte Biol 2000, 68:413-422.
- [43]Toborek M, Lee YW, Flora G, Pu H, Andreeff M, Wylegala E, Henning B, Nath A: Mechanisms of the blood–brain barrier disruption in HIV-1 infection. Cell Molec Neurobiol 2005, 25:181-199.
- [44]Neuwelt E, Abbott NJ, Abrey L, Banks WA, Blakley B, Davis T, Engelhardt B, Grammas P, Nedergaard M, Nutt J, et al.: Strategies to advance translational research into brain barriers. Lancet Neurol 2008, 7:84-96.
- [45]Katyshev V, Dore-Duffy P: Pericyte coculture models to study astrocyte, pericyte, and endothelial cell interactions. Methods Mol Biol 2012, 814:467-481.
- [46]Dore-Duffy P: Pericytes: pluripotent cells of the blood brain barrier. Current Pharmaceut Des 2008, 14:1581-1593.
- [47]Dore-Duffy P, Katychev A, Wang X, Van Buren E: CNS microvascular pericytes exhibit multipotential stem cell activity. J Cereb Blood Flow Metab 2006, 26:613-624.
- [48]Dore-Duffy P, Owen C, Balabanov R, Murphy S, Beaumont T, Rafols JA: Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc Res 2000, 60:55-69.
- [49]Bronkowski D, Katyshev V, Balabanov RD, Borisov A, Dore-Duffy P: The CNS microvascular pericyte: pericyte-astrocyte crosstalk in the regulation of tissue survival. Fluids Barriers CNS 2011, 8:8. BioMed Central Full Text
- [50]Nakagawa S, Castro V, Toborek M: Infection of human pericytes by HIV-1 disrupts the integrity of the blood–brain barrier. J Cell Mol Med 2012, 16:2950-2957.
- [51]Arthur LO, Bess JW Jr, Chertova EN, Rossio JL, Esser MT, Benveniste RE, Henderson LE, Lifson JD: Chemical inactivation of retroviral infectivity by targeting nucleocapsid protein zinc fingers: a candidate SIV vaccine. AIDS Res Human Retroviruses 1998, 14(supplement 3):S-311.
- [52]Rossio JL, Esser MT, Suryanarayana K, Schneider DK, Bess JW Jr, Vasquez GM, Wiltrout TA, Chertova E, Grimes MK, Sattentau Q, et al.: Inactivation of human immunodeficiency virus type 1 infectivity with preservation of conformational and functional integrity of virion surface proteins. J Virol 1998, 72:7992-8001.
- [53]Frost EH: Radioactive labelling of viruses: an iodination preserving biological properties. JGenVirol 1977, 35:181-185.
- [54]Montelaro RC, Rueckert RR: On the use of chloramine-T to iodinate specifically the surface proteins of intact enveloped viruses. J GenVirol 1975, 29:127-131.
- [55]Szabo CA, Deli MA, Ngo TKD, Joo F: Production of pure primary rat cerebral endothelial cell culture: a comparison of different methods. Neurobiol 1997, 5:1-16.
- [56]Nakagawa S, Deli MA, Nakao S, Honda M, Hayashi K, Nakaoke R, Kataoka Y, Niwa M: Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol 2007, 27:687-694.
- [57]Perriere N, Demeuse P, Garcia E, Regina A, Debray M, Andreux JP, Couvreur P, Scherrmann JM, Temsamani J, Couraud PO, et al.: Puromycin-based purification of rat brain capillary endothelial cell cultures. J Neurochem 2005, 93:279-289.
- [58]Dohgu S, Takata F, Yamauchi A, Nakagawa S, Egawa T, Naito M, Tsuruo T, Sawada Y, Niwa M, Kataoka Y: Brain pericytes contribute to the upregulation and maintenance of blood–brain barrier functions through transforming growth factor-beta production. Brain Res 2005, 1038:208-215.
- [59]Hiyashi K, Nakao S, Nakaoke R, Nakagawa S, Kitagawa K, Niwa M: Effects of hypoxia on endothelial/pericyte co-culture model of the blood–brain barrier. Reg Peptides 2004, 123:77-83.
- [60]Dehouck MP, Jolliet-Riant P, Bree F, Fruchart JC, Cecchelli R, Tillement JP: Drug transfer across the blood–brain barrier: correlation between in vitro and in vivo models. J Neurochem 1992, 58:1790-1797.
- [61]Davson H: The blood–brain barrier. In Physiology of the Cerebrospinal Fluid. London: J. and A. Churchill, LTD; 1967:82-103.
- [62]Fleegal-DeMotta MA, Dohgu S, Banks WA: Angiotensin II modulates BBB permeability via activation of the AT1 receptor in brain endothelial cells. J Cereb Blood Flow Metab 2009, 29:640-647.
- [63]Mayhan WG, Heistad DD: Permeability of blood–brain barrier to various sized molecules. Am J Physiology 1985, 248:H712-H718.
- [64]Banks WA, Robinson SM: Minimal penetration of lipopolysaccharide across the murine blood–brain barrier. Brain, Behav, and Immunity 2010, 2010:102-109.
- [65]Dohgu S, Fleegal-DeMotta MA, Banks WA: Lipopolysaccharide-enhanced transcellular transport of HIV-1 across the blood–brain barrier is mediated by luminal microvessel IL-6 and GM-CSF. J Neuroinflam 2011, 8:167. BioMed Central Full Text
- [66]Kovac A, Erickson MA, Banks WA: Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide. J Neuroinflam 2011, 8:139. BioMed Central Full Text
- [67]Erickson MA, Banks WA: Cytokine and chemokine responses in serum and brain after single and repeated injections of lipopolysaccharide: mutliplex quantification with path analysis. Brain, Behav, and Immunity 2011, 25:1637-1648.
- [68]Muratori C, Mangino G, Affabris E, Federico M: Astrocytes contacting HIV-1-infected macrophages increase the release of CCL2 in response to the HIV-1-dependent enhancement of membrane-associated TNF alpha in macrophages. Glia 2010, 58:1893-1904.
- [69]Yao H, Yang Y, Kim KJ, Bethel-Brown C, Gong N, Funa K, Gendelman HE, Su TP, Wang JQ, Buch S: Molecular mechanisms involving sigma receptor-mediated induction of MCP-1: implications for increased monocyte transmigration. Blood 2010, 115:4951-4962.
- [70]Gendelman HE, Ding S, Gong N, Liu J, Ramirez SH, Persidsky Y, Mosley RL, Wang T, Volsky DJ, Xiong H: Monocyte chemotactic protein-1 regulates voltage-gated K+ channels and macrophage transmigration. J Neuroimmune Pharmacol 2009, 4:47-59.
PDF