期刊论文详细信息
Journal of Experimental & Clinical Cancer Research
ERRγ target genes are poor prognostic factors in Tamoxifen-treated breast cancer
Rebecca B Riggins1  Salendra Singh1  Yuriy Gusev1  Subha Madhavan1 
[1] Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
关键词: Apoptosis;    MAPK;    ER+ breast cancer;    Tamoxifen;    Estrogen-related receptor gamma;   
Others  :  1220703
DOI  :  10.1186/s13046-015-0150-9
 received in 2014-12-03, accepted in 2015-03-26,  发布年份 2015
PDF
【 摘 要 】

Background

One-third of estrogen (ER+) and/or progesterone receptor-positive (PGR+) breast tumors treated with Tamoxifen (TAM) do not respond to initial treatment, and the remaining 70% are at risk to relapse in the future. Estrogen-related receptor gamma (ESRRG, ERRγ) is an orphan nuclear receptor with broad, structural similarities to classical ER that is widely implicated in the transcriptional regulation of energy homeostasis. We have previously demonstrated that ERRγ induces resistance to TAM in ER+ breast cancer models, and that the receptor’s transcriptional activity is modified by activation of the ERK/MAPK pathway. We hypothesize that hyper-activation or over-expression of ERRγ induces a pro-survival transcriptional program that impairs the ability of TAM to inhibit the growth of ER+ breast cancer. The goal of the present study is to determine whether ERRγ target genes are associated with reduced distant metastasis-free survival (DMFS) in ER+ breast cancer treated with TAM.

Methods

Raw gene expression data was obtained from 3 publicly available breast cancer clinical studies of women with ER+ breast cancer who received TAM as their sole endocrine therapy. ERRγ target genes were selected from 2 studies that published validated chromatin immunoprecipitation (ChIP) analyses of ERRγ promoter occupancy. Kaplan-Meier estimation was used to determine the association of ERRγ target genes with DMFS, and selected genes were validated in ER+, MCF7 breast cancer cells that express exogenous ERRγ.

Results

Thirty-seven validated receptor target genes were statistically significantly altered in women who experienced a DM within 5 years, and could classify several independent studies into poor vs. good DMFS. Two genes (EEF1A2 and PPIF) could similarly separate ER+, TAM-treated breast tumors by DMFS, and their protein levels were measured in an ER+ breast cancer cell line model with exogenous ERRγ. Finally, expression of ERRγ and these two target genes are elevated in models of ER+ breast cancer with hyperactivation of ERK/MAPK.

Conclusions

ERRγ signaling is associated with poor DMFS in ER+, TAM-treated breast cancer, and ESRRG, EEF1A2, and PPIF comprise a 3-gene signaling node that may contribute to TAM resistance in the context of an active ERK/MAPK pathway.

【 授权许可】

   
2015 Madhavan et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150723122841175.pdf 754KB PDF download
Figure 4. 21KB Image download
Figure 3. 23KB Image download
Figure 2. 27KB Image download
Figure 1. 13KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin 2011, 61(2):69-90.
  • [2]Ebctcg: Early Breast Cancer Trialists’ Collaborative Group: Tamoxifen for early breast cancer: an overview of the randomized trials Lancet 1998, 351:1451-67.
  • [3]Ebctcg: Early Breast Cancer Trialists Collaborative Group: Systemic treatment of early breast cancer by hormonal, cytotoxic, or immune therapy Lancet 1992, 399:1-15.
  • [4]Coombes RC, Hall E, Gibson LJ, Paridaens R, Jassem J, Delozier T, et al.: A randomized trial of exemestane after two to three years of tamoxifen therapy in postmenopausal women with primary breast cancer 1. N Engl J Med 2004, 350(11):1081-92.
  • [5]Thurlimann B, Keshaviah A, Coates AS, Mouridsen H, Mauriac L, Forbes JF, et al.: A comparison of letrozole and tamoxifen in postmenopausal women with early breast cancer. N Engl J Med 2005, 353(26):2747-57.
  • [6]Schiavon G, Smith IE: Status of adjuvant endocrine therapy for breast cancer. Breast Cancer Res 2014, 16(2):206. BioMed Central Full Text
  • [7]Davies C, Godwin J, Gray R, Clarke M, Cutter D, Darby S, et al.: Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 2011, 378(9793):771-84.
  • [8]Riggins R, Bouton AH, Liu MC, Clarke R: Antiestrogens, aromatase inhibitors, and apoptosis in breast cancer. Vitam Horm 2005, 71:201-37.
  • [9]Frogne T, Benjaminsen RV, Sonne-Hansen K, Sorensen BS, Nexo E, Laenkholm AV, et al.: Activation of ErbB3, EGFR and Erk is essential for growth of human breast cancer cell lines with acquired resistance to fulvestrant. Breast Cancer ResTreat 2008, 114:263-75.
  • [10]Macedo LF, Sabnis G, Brodie A: Preclinical modeling of endocrine response and resistance: focus on aromatase inhibitors. Cancer 2008, 112(3 Suppl):679-88.
  • [11]Macedo L, Sabnis G, Brodie A: Aromatase inhibitors and breast cancer. Ann N Y Acad Sci 2009, 1155:162-73.
  • [12]Rechoum Y, Rovito D, Iacopetta D, Barone I, Andò S, Weigel NL, et al.: AR collaborates with ERα in aromatase inhibitor-resistant breast cancer. Breast Cancer Res Treat 2014, 147(3):473-85.
  • [13]Clarke R, Shajahan AN, Riggins RB, Cho Y, Crawford A, Xuan J, et al.: Gene network signaling in hormone responsiveness modifies apoptosis and autophagy in breast cancer cells. J Steroid Biochem Mol Biol 2009, 114(1–2):8-20.
  • [14]Riggins RB, Schrecengost RS, Guerrero MS, Bouton AH: Pathways to tamoxifen resistance. Cancer Lett 2007, 256(1):1-24.
  • [15]Zhou X, Wang X, Huang Z, Xu L, Zhu W, Liu P: An ER-associated miRNA signature predicts prognosis in ER-positive breast cancer. J Exp Clin Cancer Res 2014, 33(1):94. BioMed Central Full Text
  • [16]Meng J, Li P, Zhang Q, Yang Z, Fu S: A four-long non-coding RNA signature in predicting breast cancer survival. J Exp Clin Cancer Res 2014, 33(1):84. BioMed Central Full Text
  • [17]Giguere V: Transcriptional control of energy homeostasis by the estrogen-related receptors. Endocr Rev 2008, 29(6):677-96.
  • [18]Ariazi EA, Clark GM, Mertz JE: Estrogen-related receptor alpha and estrogen-related receptor gamma associate with unfavorable and favorable biomarkers, respectively, in human breast cancer. Cancer Res 2002, 62(22):6510-8.
  • [19]Riggins RB, Lan JP, Zhu Y, Klimach U, Zwart A, Cavalli LR, et al.: ERR{gamma} Mediates tamoxifen resistance in novel models of invasive lobular breast cancer. Cancer Res 2008, 68(21):8908-17.
  • [20]Heckler MM, Thakor H, Schafer CC, Riggins RB: ERK/MAPK regulates ERRγ expression, transcriptional activity and receptor-mediated tamoxifen resistance in ER+ breast cancer. FEBS J 2014, 281(10):2431-42.
  • [21]Ijichi N, Shigekawa T, Ikeda K, Horie-Inoue K, Fujimura T, Tsuda H, et al.: Estrogen-related receptor γ modulates cell proliferation and estrogen signaling in breast cancer. J Steroid Biochem Mol Biol 2011, 123(1–2):1-7.
  • [22]Girard BJ, Regan Anderson TM, Welch SL, Nicely J, Seewaldt VL, Ostrander JH: Cytoplasmic PELP1 and ERRgamma protect human mammary epithelial cells from tam-induced cell death. PLoS One 2015, 10(3):e0121206.
  • [23]Gianni L, Zambetti M, Clark K, Baker J, Cronin M, Wu J, et al.: Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer. J Clin Oncol 2005, 23(29):7265-77.
  • [24]Riggins RB, Mazzotta MM, Maniya OZ, Clarke R: Orphan nuclear receptors in breast cancer pathogenesis and therapeutic response. Endocr Relat Cancer 2010, 17(3):R213-31.
  • [25]Chang CY, Kazmin D, Jasper JS, Kunder R, Zuercher WJ, McDonnell DP: The metabolic regulator ERRα, a downstream target of HER2/IGF-1R, as a therapeutic target in breast cancer. Cancer Cell 2011, 20(4):500-10.
  • [26]Dufour CR, Wilson BJ, Huss JM, Kelly DP, Alaynick WA, Downes M, et al.: Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERRalpha and gamma. Cell Metab 2007, 5(5):345-56.
  • [27]Eichner LJ, Perry MC, Dufour CR, Bertos N, Park M, St-Pierre J, et al.: miR-378(∗) mediates metabolic shift in breast cancer cells via the PGC-1β/ERRγ transcriptional pathway. Cell Metab 2010, 12(4):352-61.
  • [28]Loi S, Haibe-Kains B, Desmedt C, Wirapati P, Lallemand F, Tutt AM, et al.: Predicting prognosis using molecular profiling in estrogen receptor-positive breast cancer treated with tamoxifen. BMC Genomics 2008, 9:239. BioMed Central Full Text
  • [29]Zhou Y, Yau C, Gray JW, Chew K, Dairkee SH, Moore DH, et al.: Enhanced NF kappa B and AP-1 transcriptional activity associated with antiestrogen resistant breast cancer. BMC Cancer 2007, 7:59. BioMed Central Full Text
  • [30]Zhang Y, Sieuwerts AM, McGreevy M, Casey G, Cufer T, Paradiso A, et al.: The 76-gene signature defines high-risk patients that benefit from adjuvant tamoxifen therapy. Breast Cancer Res Treat 2009, 116(2):303-9.
  • [31]Madhavan S, Gusev Y, Harris M, Tanenbaum DM, Gauba R, Bhuvaneshwar K, et al.: G-DOC: a systems medicine platform for personalized oncology. Neoplasia 2011, 13(9):771-83.
  • [32]Gusev Y, Riggins RB, Bhuvaneshwar K, Gauba R, Sheahan L, Clarke R, et al.: In silico discovery of mitosis regulation networks associated with early distant metastases in estrogen receptor positive breast cancers. Cancer Inform 2013, 12:31-51.
  • [33]Hong H, Yang L, Stallcup MR: Hormone-independent transcriptional activation and coactivator binding by novel orphan nuclear receptor ERR3 1. J Biol Chem 1999, 274(32):22618-26.
  • [34]Bouker KB, Skaar TC, Fernandez DR, O’Brien KA, Clarke R: Interferon regulatory factor-1 mediates the proapoptotic but not cell cycle arrest effects of the steroidal antiestrogen ICI 182,780 (Faslodex, Fulvestrant). Cancer Res 2004, 64(11):4030-9.
  • [35]Rae JM, Johnson MD, Scheys JO, Cordero KE, Larios JM, Lippman ME: GREB 1 is a critical regulator of hormone dependent breast cancer growth. Breast Cancer Res Treat 2005, 92(2):141-9.
  • [36]Creighton CJ, Hilger AM, Murthy S, Rae JM, Chinnaiyan AM, El-Ashry D: Activation of mitogen-activated protein kinase in estrogen receptor alpha-positive breast cancer cells in vitro induces an in vivo molecular phenotype of estrogen receptor alpha-negative human breast tumors. Cancer Res 2006, 66(7):3903-11.
  • [37]Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, et al.: ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 2004, 6(1):1-6.
  • [38]Györffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, et al.: An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat 2010, 123(3):725-31.
  • [39]Castet A, Herledan A, Bonnet S, Jalaguier S, Vanacker JM, Cavailles V: Receptor-interacting protein 140 differentially regulates estrogen receptor-related receptor transactivation depending on target genes. Mol Endocrinol 2006, 20(5):1035-47.
  • [40]Deblois G, Hall J, Perry M, Laganière J, Ghahremani M, Park M, et al.: Genome-wide identification of direct target genes implicates estrogen-related receptor alpha as a determinant of breast cancer heterogeneity. Cancer Res 2009, 69(15):6149-57.
  • [41]Chang J, Clark GM, Allred DC, Mohsin S, Chamness G, Elledge RM: Survival of patients with metastatic breast carcinoma: importance of prognostic markers of the primary tumor. Cancer 2003, 97(3):545-53.
  • [42]Desmedt C, Piette F, Loi S, Wang Y, Lallemand F, Haibe-Kains B, et al.: Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res 2007, 13(11):3207-14.
  • [43]Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005, 102(43):15545-50.
  • [44]Wang J, Duncan D, Shi Z, Zhang B: WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res 2013, 41(Web Server issue):W77-83.
  • [45]Sun Y, Du C, Wang B, Zhang Y, Liu X, Ren G: Up-regulation of eEF1A2 promotes proliferation and inhibits apoptosis in prostate cancer. Biochem Biophys Res Commun 2014, 450(1):1-6.
  • [46]Li Z, Qi CF, Shin DM, Zingone A, Newbery HJ, Kovalchuk AL, et al.: Eef1a2 promotes cell growth, inhibits apoptosis and activates JAK/STAT and AKT signaling in mouse plasmacytomas. PLoS One 2010, 5(5):e10755.
  • [47]Sun Y, Wong N, Guan Y, Salamanca CM, Cheng JC, Lee JM, et al.: The eukaryotic translation elongation factor eEF1A2 induces neoplastic properties and mediates tumorigenic effects of ZNF217 in precursor cells of human ovarian carcinomas. Int J Cancer 2008, 123(8):1761-9.
  • [48]Schubert A, Grimm S: Cyclophilin D, a component of the permeability transition-pore, is an apoptosis repressor. Cancer Res 2004, 64(1):85-93.
  • [49]Eliseev RA, Malecki J, Lester T, Zhang Y, Humphrey J, Gunter TE: Cyclophilin D interacts with Bcl2 and exerts an anti-apoptotic effect. J Biol Chem 2009, 284(15):9692-9.
  • [50]Lee J, Kim SS: Current implications of cyclophilins in human cancers. J Exp Clin Cancer Res 2010, 29:97. BioMed Central Full Text
  • [51]Riggins RB: The pERK of being a target: Kinase regulation of the orphan nuclear receptor ERRγ. Receptors Clin Invest 2014, 1(5):253-7.
  文献评价指标  
  下载次数:0次 浏览次数:2次