期刊论文详细信息
Journal of Biomedical Science
Effects of Doxycycline on gene expression in Wolbachia and Brugia malayi adult female worms in vivo
Gary J Weil1  Makedonka Mitreva2  Seth D Crosby2  Michael Heinz2  Sahar Abubucker2  Yuefang Huang1  Ramakrishna U Rao1 
[1] Infectious Diseases Division, Department of Internal Medicine, St. Louis, Missouri, USA;The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
关键词: Microarray;    Gene expression;    Filariasis;    Wolbachia;    Brugia malayi;    Doxycycline;   
Others  :  825586
DOI  :  10.1186/1423-0127-19-21
 received in 2011-10-19, accepted in 2012-02-09,  发布年份 2012
PDF
【 摘 要 】

Background

Most filarial nematodes contain Wolbachia symbionts. The purpose of this study was to examine the effects of doxycycline on gene expression in Wolbachia and adult female Brugia malayi.

Methods

Brugia malayi infected gerbils were treated with doxycycline for 6-weeks. This treatment largely cleared Wolbachia and arrested worm reproduction. RNA recovered from treated and control female worms was labeled by random priming and hybridized to the Version 2- filarial microarray to obtain expression profiles.

Results and discussion

Results showed significant changes in expression for 200 Wolbachia (29% of Wolbachia genes with expression signals in untreated worms) and 546 B. malayi array elements after treatment. These elements correspond to known genes and also to novel genes with unknown biological functions. Most differentially expressed Wolbachia genes were down-regulated after treatment (98.5%). In contrast, doxycycline had a mixed effect on B. malayi gene expression with many more genes being significantly up-regulated after treatment (85% of differentially expressed genes). Genes and processes involved in reproduction (gender-regulated genes, collagen, amino acid metabolism, ribosomal processes, and cytoskeleton) were down-regulated after doxycycline while up-regulated genes and pathways suggest adaptations for survival in response to stress (energy metabolism, electron transport, anti-oxidants, nutrient transport, bacterial signaling pathways, and immune evasion).

Conclusions

Doxycycline reduced Wolbachia and significantly decreased bacterial gene expression. Wolbachia ribosomes are believed to be the primary biological target for doxycycline in filarial worms. B. malayi genes essential for reproduction, growth and development were also down-regulated; these changes are consistent with doxycycline effects on embryo development and reproduction. On the other hand, many B. malayi genes involved in energy production, electron-transport, metabolism, anti-oxidants, and others with unknown functions had increased expression signals after doxycycline treatment. These results suggest that female worms are able to compensate in part for the loss of Wolbachia so that they can survive, albeit without reproductive capacity. This study of doxycycline induced changes in gene expression has provided new clues regarding the symbiotic relationship between Wolbachia and B. malayi.

【 授权许可】

   
2012 Rao et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140713070153112.pdf 1510KB PDF download
Figure 3. 27KB Image download
Figure 2. 77KB Image download
Figure 1. 129KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]McLaren DJ, Worms MJ, Laurence BR, Simpson MG: Micro-organisms in filarial larvae (Nematoda). Trans R Soc Trop Med Hyg 1975, 69:509-514.
  • [2]Kozek WJ: Transovarially-transmitted intracellular microorganisms in adult and larval stages of Brugia malayi. J Parasitol 1977, 63:992-1000.
  • [3]Kozek W, Rao R: The discovery of Wolbachia in arthropods and nematodes- a historical prespective. In Wolbachia: a bug's life in another bug. Volume 5. Edited by AH, RU R. New York: Karger; 2007.
  • [4]Rao RU, Moussa H, Weil GJ: Brugia malayi: effects of antibacterial agents on larval viability and development in vitro. Exp Parasitol 2002, 101:77-81.
  • [5]Taylor MJ, Hoerauf A: Wolbachia bacteria of filarial nematodes. Parasitol Today 1999, 15:437-442.
  • [6]Rao R, Weil GJ: In vitro effects of antibiotics on Brugia malayi worm survival and reproduction. J Parasitol 2002, 88:605-611.
  • [7]Chirgwin SR, Coleman SU, Porthouse KH, Nowling JM, Punkosdy GA, Klei TR: Removal of Wolbachia from Brugia pahangi is closely linked to worm death and fecundity but does not result in altered lymphatic lesion formation in Mongolian gerbils (Meriones unguiculatus). Infect Immun 2003, 71:6986-6994.
  • [8]Fenn K, Blaxter M: Wolbachia genomes: revealing the biology of parasitism and mutualism. Trends Parasitol 2006, 22:60-65.
  • [9]Zientz E, Dandekar T, Gross R: Metabolic interdependence of obligate intracellular bacteria and their insect hosts. Microbiol Mol Biol Rev 2004, 68:745-770.
  • [10]Brownlie JC, Cass BN, Riegler M, Witsenburg JJ, Iturbe-Ormaetxe I, McGraw EA, O'Neill SL: Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathog 2009, 5:e1000368.
  • [11]Taylor MJ, Bandi C, Hoerauf A: Wolbachia bacterial endosymbionts of filarial nematodes. Adv Parasitol 2005, 60:245-284.
  • [12]Slatko BE, Taylor MJ, Foster JM: The Wolbachia endosymbiont as an anti-filarial nematode target. Symbiosis 2010, 51:55-65.
  • [13]Townson S, Hutton D, Siemienska J, Hollick L, Scanlon T, Tagboto SK, Taylor MJ: Antibiotics and Wolbachia in filarial nematodes: antifilarial activity of rifampicin, oxytetracycline and chloramphenicol against Onchocerca gutturosa, Onchocerca lienalis and Brugia pahangi. Ann Trop Med Parasitol 2000, 94:801-816.
  • [14]Genchi C, Sacchi L, Bandi C, Venco L: Preliminary results on the effect of tetracycline on the embryogenesis and symbiotic bacteria (Wolbachia) of Dirofilaria immitis. An update and discussion. Parassitologia 1998, 40:247-249.
  • [15]Chirgwin SR, Nowling JM, Coleman SU, Klei TR: Brugia pahangi and Wolbachia: the kinetics of bacteria elimination, worm viability, and host responses following tetracycline treatment. Exp Parasitol 2003, 103:16-26.
  • [16]Hoerauf A, Adjei O, Buttner DW: Antibiotics for the treatment of onchocerciasis and other filarial infections. Curr Opin Investig Drugs 2002, 3:533-537.
  • [17]Langworthy NG, Renz A, Mackenstedt U, Henkle-Duhrsen K, de Bronsvoort MB, Tanya VN, Donnelly MJ, Trees AJ: Macrofilaricidal activity of tetracycline against the filarial nematode Onchocerca ochengi: elimination of Wolbachia precedes worm death and suggests a dependent relationship. Proc Biol Sci 2000, 267:1063-1069.
  • [18]Hoerauf A, Volkmann L, Nissen-Paehle K, Schmetz C, Autenrieth I, Buttner DW, Fleischer B: Targeting of Wolbachia endobacteria in Litomosoides sigmodontis: comparison of tetracyclines with chloramphenicol, macrolides and ciprofloxacin. Trop Med Int Health 2000, 5:275-279.
  • [19]Arumugam S, Pfarr KM, Hoerauf A: Infection of the intermediate mite host with Wolbachia-depleted Litomosoides sigmodontis microfilariae: impaired L1 to L3 development and subsequent sex-ratio distortion in adult worms. Int J Parasitol 2008, 38:981-987.
  • [20]Casiraghi M, McCall JW, Simoncini L, Kramer LH, Sacchi L, Genchi C, Werren JH, Bandi C: Tetracycline treatment and sex-ratio distortion: a role for Wolbachia in the moulting of filarial nematodes? Int J Parasitol 2002, 32:1457-1468.
  • [21]Bosshardt SC, McCall JW, Coleman SU, Jones KL, Petit TA, Klei TR: Prophylactic activity of tetracycline against Brugia pahangi infection in jirds (Meriones unguiculatus). J Parasitol 1993, 79:775-777.
  • [22]Hoerauf A, Mand S, Adjei O, Fleischer B, Buttner DW: Depletion of Wolbachia endobacteria in Onchocerca volvulus by doxycycline and microfilaridermia after ivermectin treatment. Lancet 2001, 357:1415-1416.
  • [23]Hoerauf A, Mand S, Fischer K, Kruppa T, Marfo-Debrekyei Y, Debrah AY, Pfarr KM, Adjei O, Buttner DW: Doxycycline as a novel strategy against bancroftian filariasis-depletion of Wolbachia endosymbionts from Wuchereria bancrofti and stop of microfilaria production. Med Microbiol Immunol 2003, 192:211-216.
  • [24]Taylor MJ, Makunde WH, McGarry HF, Turner JD, Mand S, Hoerauf A: Macrofilaricidal activity after doxycycline treatment of Wuchereria bancrofti: a double-blind, randomised placebo-controlled trial. Lancet 2005, 365:2116-2121.
  • [25]Wanji S, Tendongfor N, Nji T, Esum M, Che JN, Nkwescheu A, Alassa F, Kamnang G, Enyong PA, Taylor MJ, Hoerauf A, Taylor DW: Community-directed delivery of doxycycline for the treatment of onchocerciasis in areas of co-endemicity with loiasis in Cameroon. Parasit Vectors 2009, 2:39. BioMed Central Full Text
  • [26]Turner JD, Tendongfor N, Esum M, Johnston KL, Langley RS, Ford L, Faragher B, Specht S, Mand S, Hoerauf A, Enyong P, Wanji S, Taylor MJ: Macrofilaricidal activity after doxycycline only treatment of Onchocerca volvulus in an area of Loa loa co-endemicity: a randomized controlled trial. PLoS Negl Trop Dis 2010, 4:e660.
  • [27]Hoerauf A, Nissen-Pahle K, Schmetz C, Henkle-Duhrsen K, Blaxter ML, Buttner DW, Gallin MY, Al-Qaoud KM, Lucius R, Fleischer B: Tetracycline therapy targets intracellular bacteria in the filarial nematode Litomosoides sigmodontis and results in filarial infertility. J Clin Invest 1999, 103:11-18.
  • [28]Brouqui P, Fournier PE, Raoult D: Doxycycline and eradication of microfilaremia in patients with loiasis. Emerg Infect Dis 2001, 7:604-605.
  • [29]Foster J, Ganatra M, Kamal I, Ware J, Makarova K, Ivanova N, Bhattacharyya A, Kapatral V, Kumar S, Posfai J, Vincze T, Ingram J, Moran L, Lapidus A, Omelchenko M, Kyrpides N, Ghedin E, Wang S, Goltsman E, Joukov V, Ostrovskaya O, Tsukerman K, Mazur M, Comb D, Koonin E, Slatko B: The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol 2005, 3:e121.
  • [30]Pfarr K, Hoerauf A: The annotated genome of Wolbachia from the filarial nematode Brugia malayi: what it means for progress in antifilarial medicine. PLoS Med 2005, 2:e110.
  • [31]Kucers A, Crowe SM, Grayson ML, Hay JF: The use of antibiotics. A clinical review of antibacterial, antifungal and antiviral drugs. Boston: Butterworth & Heinemann, Oxford, U.K.; 1997.
  • [32]Chopra I, Roberts M: Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 2001, 65:232-260.
  • [33]Goodman CD, Su V, McFadden GI: The effects of anti-bacterials on the malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 2007, 152:181-191.
  • [34]Kiatfuengfoo R, Suthiphongchai T, Prapunwattana P, Yuthavong Y: Mitochondria as the site of action of tetracycline on Plasmodium falciparum. Mol Biochem Parasitol 1989, 34:109-115.
  • [35]Heider U, Blaxter M, Hoerauf A, Pfarr KM: Differential display of genes expressed in the filarial nematode Litomosoides sigmodontis reveals a putative phosphate permease up-regulated after depletion of Wolbachia endobacteria. Int J Med Microbiol 2006, 296:287-299.
  • [36]Ghedin E, Wang S, Spiro D, Caler E, Zhao Q, Crabtree J, Allen JE, Delcher AL, Guiliano DB, Miranda-Saavedra D, Angiuoli SV, Creasy T, Amedeo P, Haas B, El-Sayed NM, Wortman JR, Feldblyum T, Tallon L, Schatz M, Shumway M, Koo H, Salzberg SL, Schobel S, Pertea M, Pop M, White O, Barton GJ, Carlow CK, Crawford MJ, Daub J, et al.: Draft genome of the filarial nematode parasite Brugia malayi. Science 2007, 317:1756-1760.
  • [37]Kumar S, Chaudhary K, Foster JM, Novelli JF, Zhang Y, Wang S, Spiro D, Ghedin E, Carlow CK: Mining predicted essential genes of Brugia malayi for nematode drug targets. PLoS ONE 2007, 2:e1189.
  • [38]Ash LR: Chronic Brugia pahangi and Brugia malayi infections in Meriones unguiculatus. J Parasitol 1973, 59:442-447.
  • [39]Rao RU, Huang Y, Fischer K, Fischer PU, Weil GJ: Brugia malayi: Effects of nitazoxanide and tizoxanide on adult worms and microfilariae of filarial nematodes. Exp Parasitol 2009, 121:38-45.
  • [40]Li BW, Rush AC, Mitreva M, Yin Y, Spiro D, Ghedin E, Weil GJ: Transcriptomes and pathways associated with infectivity, survival and immunogenicity in Brugia malayi L3. BMC Genomics 2009, 10:267. BioMed Central Full Text
  • [41]Li BW, Rush AC, Jiang DJ, Mitreva M, Abubucker S, Weil GJ: Gender-associated genes in filarial nematodes are important for reproduction and potential intervention targets. PLoS Negl Trop Dis 2011, 5:e947.
  • [42]Weiss GB, Wilson GN, Steggles AW, Anderson WF: Importance of full size complementary DNA in nucleic acid hybridization. J Biol Chem 1976, 251:3425-3431.
  • [43]Blaxter M, Daub J, Guiliano D, Parkinson J, Whitton C: The Brugia malayi genome project: expressed sequence tags and gene discovery. Trans R Soc Trop Med Hyg 2002, 96:7-17.
  • [44]Schmittgen TD, Livak KJ: Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 2008, 3:1101-1108.
  • [45]Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M: KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 2010, 38:D355-360.
  • [46]Mulder NJ, Apweiler R, Attwood TK, Bairoch A, et al.: New developments in the InterPro database. Nucleic Acids Res 2007, 35:D224-228.
  • [47]Prufer K, Muetzel B, Do HH, Weiss G, Khaitovich P, Rahm E, Paabo S, Lachmann M, Enard W: FUNC: a package for detecting significant associations between gene sets and ontological annotations. BMC Bioinformatics 2007, 8:41. BioMed Central Full Text
  • [48]Ghedin E, Hailemariam T, DePasse JV, Zhang X, Oksov Y, Unnasch TR, Lustigman S: Brugia malayi gene expression in response to the targeting of the Wolbachia endosymbiont by tetracycline treatment. PLoS Negl Trop Dis 2009, 3:e525.
  • [49]Strübing U, Lucius R, Hoerauf A, Pfarr KM: Mitochondrial genes for heme-dependent respiratory chain complexes are up-regulated after depletion of Wolbachia from filarial nematodes. Int J Parasitol 2010, 1193-1202.
  • [50]Bandi C, McCall JW, Genchi C, Corona S, Venco L, Sacchi L: Effects of tetracycline on the filarial worms Brugia pahangi and Dirofilaria immitis and their bacterial endosymbionts Wolbachia. Int J Parasitol 1999, 29:357-364.
  • [51]Hoerauf A, Mand S, Volkmann L, Buttner M, Marfo-Debrekyei Y, Taylor M, Adjei O, Buttner DW: Doxycycline in the treatment of human onchocerciasis: Kinetics of Wolbachia endobacteria reduction and of inhibition of embryogenesis in female Onchocerca worms. Microbes Infect 2003, 5:261-273.
  • [52]Nam DK, Lee S, Zhou G, Cao X, Wang C, Clark T, Chen J, Rowley JD, Wang SM: Oligo(dT) primer generates a high frequency of truncated cDNAs through internal poly(A) priming during reverse transcription. Proc Natl Acad Sci USA 2002, 99:6152-6156.
  • [53]Richmond CS, Glasner JD, Mau R, Jin H, Blattner FR: Genome-wide expression profiling in Escherichia coli K-12. Nucleic Acids Res 1999, 27:3821-3835.
  • [54]Wilson M, DeRisi J, Kristensen HH, Imboden P, Rane S, Brown PO, Schoolnik GK: Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc Natl Acad Sci USA 1999, 96:12833-12838.
  • [55]Rao R, Huang Y, Crosby S, Mitreva M, Yin Y, Weil GJ: Long-term doxycycline treatment affects Wolbachia and parasite gene expression in adult female Brugia malayi [abstract]. Amer J Trop Med Hyg 2007, 77:779.
  • [56]Holman AG, Davis PJ, Foster JM, Carlow CK, Kumar S: Computational prediction of essential genes in an unculturable endosymbiotic bacterium, Wolbachia of Brugia malayi. BMC Microbiol 2009, 9:243. BioMed Central Full Text
  • [57]Maizels RM, Gomez-Escobar N, Gregory WF, Murray J, Zang X: Immune evasion genes from filarial nematodes. Int J Parasitol 2001, 31:889-898.
  • [58]Emes R, Thompson F, Moore J, Zang X, Devaney E: Cloning and characterisation of mmc-1, a microfilarial-specific gene, from Brugia pahangi. Int J Parasitol 2002, 32:415-424.
  • [59]Wu B, Novelli J, Foster J, Vaisvila R, Conway L, Ingram J, Ganatra M, Rao AU, Hamza I, Slatko B: The heme biosynthetic pathway of the obligate Wolbachia endosymbiont of Brugia malayi as a potential anti-filarial drug target. PLoS Negl Trop Dis 2009, 3:e475.
  • [60]Dedeine F, Vavre F, Fleury F, Loppin B, Hochberg ME, Bouletreau M: Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proc Natl Acad Sci USA 2001, 98:6247-6252.
  • [61]Xi Z, Gavotte L, Xie Y, Dobson SL: Genome-wide analysis of the interaction between the endosymbiotic bacterium Wolbachia and its Drosophila host. BMC Genomics 2008, 9:1. BioMed Central Full Text
  • [62]Hernandez-Bello R, Bermudez-Cruz RM, Fonseca-Linan R, Garcia-Reyna P, Le Guerhier F, Boireau P, Ortega-Pierres G: Identification, molecular characterisation and differential expression of caveolin-1 in Trichinella spiralis maturing oocytes and embryos. Int J Parasitol 2008, 38:191-202.
  • [63]Michalski ML, Monsey JD, Cistola DP, Weil GJ: An embryo-associated fatty acid-binding protein in the filarial nematode Brugia malayi. Mol Biochem Parasitol 2002, 124:1-10.
  • [64]Merriweather A, Guenzler V, Brenner M, Unnasch TR: Characterization and expression of enzymatically active recombinant filarial prolyl 4-hydroxylase. Mol Biochem Parasitol 2001, 116:185-197.
  • [65]Britton C, Murray L: Cathepsin L protease (CPL-1) is essential for yolk processing during embryogenesis in Caenorhabditis elegans. J Cell Sci 2004, 117:5133-5143.
  • [66]Ford L, Zhang J, Liu J, Hashmi S, Fuhrman JA, Oksov Y, Lustigman S: Functional analysis of the cathepsin-like cysteine protease genes in adult Brugia malayi using RNA interference. PLoS Negl Trop Dis 2009, 3:e377.
  • [67]Dangi A, Vedi S, Nag JK, Paithankar S, Singh MP, Kar SK, Dube A, Misra-Bhattacharya S: Tetracycline treatment targeting Wolbachia affects expression of an array of proteins in Brugia malayi parasite. Proteomics 2009, 9:4192-4208.
  • [68]Clarke ND, Berg JM: Zinc fingers in Caenorhabditis elegans: finding families and probing pathways. Science 1998, 282:2018-2022.
  • [69]Maeda I, Kohara Y, Yamamoto M, Sugimoto A: Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr Biol 2001, 11:171-176.
  • [70]Kamath RS, Ahringer J: Genome-wide RNAi screening in Caenorhabditis elegans. Methods 2003, 30:313-321.
  文献评价指标  
  下载次数:19次 浏览次数:24次