期刊论文详细信息
Journal of Experimental & Clinical Cancer Research
Central role of Snail1 in the regulation of EMT and resistance in cancer: a target for therapeutic intervention
Benjamin Bonavida1  Samantha Kaufhold1 
[1] Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center and David Geffen School of Medicine, University of California, Los Angeles 90095, CA, USA
关键词: Stem cells;    Snail;    Resistance;    Metastasis;    EMT;    Cancer;   
Others  :  1136173
DOI  :  10.1186/s13046-014-0062-0
 received in 2014-05-19, accepted in 2014-07-10,  发布年份 2014
PDF
【 摘 要 】

Snail1 is the founding member of the Snail superfamily of zinc-finger transcription factors, which also includes Snail2 (Slug) and Snail3 (Smuc). The superfamily is involved in cell differentiation and survival, two processes central in cancer research. Encoded by the SNAI1 gene located on human chromosome 20q13.2, Snail1 is composed of 264 amino acids and usually acts as a transcriptional repressor. Phosphorylation and nuclear localization of Snail1, governed by PI3K and Wnt signaling pathways crosstalk, are critical in Snail1’s regulation. Snail1 has a pivotal role in the regulation of epithelial-mesenchymal transition (EMT), the process by which epithelial cells acquire a migratory, mesenchymal phenotype, as a result of its repression of E-cadherin. Snail1-induced EMT involves the loss of E-cadherin and claudins with concomitant upregulation of vimentin and fibronectin, among other biomarkers. While essential to normal developmental processes such as gastrulation, EMT is associated with metastasis, the cancer stem cell phenotype, and the regulation of chemo and immune resistance in cancer. Snail1 expression is a common sign of poor prognosis in metastatic cancer, and tumors with elevated Snail1 expression are disproportionately difficult to eradicate by current therapeutic treatments. The significance of Snail1 as a prognostic indicator, its involvement in the regulation of EMT and metastasis, and its roles in both drug and immune resistance point out that Snail1 is an attractive target for tumor growth inhibition and a target for sensitization to cytotoxic drugs.

【 授权许可】

   
2014 Kaufhold and Bonavida; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150311140959502.pdf 947KB PDF download
Figure 4. 29KB Image download
Figure 3. 29KB Image download
Figure 2. 16KB Image download
Figure 1. 136KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Nieto MA: The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 2002, 3:155-166.
  • [2]Boulay J, Dennefeld C, Alberga A: The Drosophila developmental gene snail encodes a protein with nucleic acid binding fingers. Nature 1987, 330:395-398.
  • [3]Manzanares M, Locascio A, Nieto MA: The increasing complexity of the snail gene superfamily in metazoan evolution. Trends Genet 2001, 17:178-181.
  • [4]Grau Y, Carteret C, Simpson P: Mutations and chromosomal rearrangements affecting the expression of snail, a gene involved in embryonic patterning in Drosophila melanogaster. Genetics 1984, 108:347-360.
  • [5]Nusslein-Volhard C, Weischaus E, Kluding H: Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. I. Zygotic loci on the second chromosome. Wilheim Roux’s Arch Dev Biol 1984, 193:267-282.
  • [6]Twigg S, Wilkie AOM: Characterization of the human snail (SNAI1) gene and exclusion as a major disease gene in craniosynostosis. Hum Genet 1999, 105:320-326.
  • [7]Paznekas W, Okajima K, Schertzer M, Wood S, Jabs E: Genomic organization, expression, and chromosome location of the human snail gene (SNAI1) and a related processed pseudogene (SNAI1P). Genomics 1999, 62:42-49.
  • [8]Barrallo-Gimeno A, Nieto MA: Evolutionary history of the snail/scratch superfamily. Trends Genet 2009, 25:248-252.
  • [9][http://www.uniprot.org/uniprot/O95863] webcite Human Snail1: sequence retrieved from and alignments run through NIH BLAST http://blast.st-va.ncbi.nlm.nih.gov/Blast.cgi.
  • [10]Kalluri R, Weinberg R: The basics of epithelial-mesenchymal transition. J Clin Invest 2009, 119:1420-1428.
  • [11]Carver EA, Jiang R, Gridley T: The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Mol Cell Biol 2001, 21:8184-8188.
  • [12]Barrallo-Gimeno A, Nieto MA: The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 2005, 132:3151-3161.
  • [13]Kajita M, McClinic K, Wade P: Aberrant expression of the transcription factors Snail and Slug alters the response to genotoxic stress. Mol Cell Biol 2004, 24:7559-7566.
  • [14]Mani S, Guo W, Liao MJ, Eaton E, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008, 133:704-715.
  • [15]Zhou W, Lv R, Qi W, Wu D, Xu Y, Liu W, Mou Y, Wang L: Snail contributes to the maintenance of stem cell-like phenotype cells in human pancreatic cancer. PLoS One 2014, 9:e87409.
  • [16]Wang H, Zhang G, Zhang H, Zhang F, Zhou BP, Ning F, Wang HS, Cai SH, Du J: Acquisition of epithelial-mesenchymal transition phenotype and cancer stem cell-like properties in cisplatin-resistant lung cancer cells through AKT/β-catenin/Snail signaling pathway. Eur J Pharmacol 2014, 723:156-166.
  • [17]Majmundar AJ, Wong WJ, Simon MC: Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 2010, 40:294-309.
  • [18]Peinado H, Del Carmen Iglesias-de la Cruz M, Olmeda D, Csiszar K, Fong KS, Vega S, Nieto MA, Cano A, Portillo F: A molecular role for lysyl oxidase-like 2 enzyme in snail regulation and tumor progression. EMBO J 2005, 24:3446-3458.
  • [19]Zhu GH, Huang C, Feng ZZ, Lv XH, Qiu ZJ: Hypoxia-induced snail expression through transcriptional regulation by HIF-1alpha in pancreatic cancer cells. Dig Dis Sci 2013, 58:3503-3515.
  • [20]Barbera MJ, Puig I, Dominguez D, Julien-Grille S, Guaita-Esteruelas S, Peiro S, Baulida J, Franci C, Dedhar S, Larue L, Garcia de Herreros A: Regulation of snail transcription during epithelial to mesenchymal transition of tumor cells. Oncogene 2004, 23:7345-7354.
  • [21]Brandl M, Seidler B, Haller F, Adamski J, Schmid RM, Saur D, Schneider G: IKKalpha controls canonical TGFBeta-SMAD signaling to regulate genes expressing snail and slug during EMT in Panc1 cells. J Cell Sci 2010, 123:4231-4239.
  • [22]Thuault S, Tan EJ, Peinado H, Cano A, Heldin CH, Moustakas A: HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. J Biol Chem 2008, 283:33437-33446.
  • [23]McPhee T, McDonald P, Oloumi A, Dedhar S: Integrin-linked kinase regulates E-Cadherin expression through PARP-1. Dev Dyn 2008, 237:2737-2747.
  • [24]Yadav A, Kumar B, Datta J, Teknos T, Kumar P: IL-6 promotes head and neck tumor metastasis by inducing epithelial-mesenchymal transition via the JAK-STAT3-SNAIL signaling pathway. Mol Cancer Res 2011, 9:1658-1667.
  • [25]Zhang XH, Liang X, Wang TS, Liang XH, Zuo RJ, Deng WB, Zhang ZR, Qin FN, Zhao ZA, Yang ZM: Heparin-binding epidermal growth factor-like growth factor (HB-EGF) induction on Snail expression during mouse decidualization. Mol Cell Endocrinol 2013, 381:272-279.
  • [26]Li X, Deng W, Lobo-Ruppert S, Ruppert J: Gli1 acts through Snail and E-Cadherin to promote nuclear signaling by Beta-catenin. Oncogene 2007, 26:4489-4498.
  • [27]Fujita N, Jaye D, Kajita M, Geigerman C, Moreno C, Wade P: MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell 2003, 113:207-219.
  • [28]Dhasarathy A, Kajita M, Wade P: The transcription factor snail mediates epithelial to mesenchymal transitions by repression of estrogen receptor-alpha. Mol Endocrinol 2007, 21:2907-2918.
  • [29]Grotegut S, von Schweinitz D, Christofori G, Lehembre F: Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J 2006, 25:3534-3545.
  • [30]Palmer M, Majumder P, Cooper J, Yoon H, Wade P, Boss J: Yin Yang 1 regulates the expression of Snail through a distal enhancer. Mol Cancer Res 2009, 7:221-229.
  • [31]Peiro S, Escriva M, Puig I, Barbera MJ, Dave N, Herranz N, Larriba MJ, Takkunen M, Franci C, Munoz A, Virtanen I, Baulida J, Garcia de herreros A: Snail1 transcriptional repressor binds to its own promoter and controls its expression. Nucleic Acids Res 2006, 34:2077-2084.
  • [32]Kim NH, Kim HS, Li XY, Lee I, Choi HS, Kang SE, Cha SY, Ryu JK, Yoon D, Fearon ER, Rowe RG, Lee S, Maher CA, Weiss SJ, Yook JI: A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesencymal transition. J Cell Biol 2011, 195:417-433.
  • [33]Zhou BP, Deng J, Xia W, Xu J, Li Y, Gunduz M, Hung MC: Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 2004, 6:931-940.
  • [34]Katoh M, Katoh M: Cross-talk of WNT and FGF signaling pathways at GSK3beta to regulate beta-catenin and SNAIL signaling cascades. Cancer Biol Ther 2006, 5:1059-1064.
  • [35]Vinas-Castells R, Beltran M, Valls G, Gomez I, Garcia JM, Montserrat-Sentis B, Baulida J, Bonilla F, Garcia de herreros A, Diaz VM: The hypoxia-controlled FBXL14 ubiquitin ligase targets SNAIL1 for proteasome degradation. J Biol Chem 2010, 285:3794-3805.
  • [36]Yang Z, Rayala S, Nguyen D, Vadlmudi R, Chen S, Kumar R: Pak1 phosphorylation of snail, a master regulator of epithelial-to-mesenchhyme transition, modulates snail’s subcellular localization and functions. Cancer Res 2005, 65:3179-3184.
  • [37]Dominguez D, Montserrat-Sentis B, Virgos-Soler A, Guaita S, Grueso J, Porta M, Puig I, Baulida J, Franci C, Garcia de Herreros A: Phosphorylation regulates the subcellular location and activity of the snail transcriptional repressor. Mol Cell Biol 2003, 23:5078-5089.
  • [38]Ko H, Kim H, Kim N, Lee S, Kim K, Hong S, Yook J: Nuclear localization signals of the E-Cadherin transcriptional repressor Snail. Cells Tissues Organs 2007, 185:66-72.
  • [39]Wu Y, Deng J, Rychahou PG, Qiu S, Evers BM, Zhou BP: Stabilization of snail by NFkappaB is required for inflammation-induced cell migration and invasion. Cancer Cell 2009, 15:416-428.
  • [40]Wu Y, Zhou BP: Snail: more than EMT. Cell Adhes Migrat 2010, 4:199-203.
  • [41]Yook JI, Li XY, Ota I, Fearon ER, Weiss SJ: Wnt-dependent regulation of the E-cadherin repressor snail. J Biol Chem 2005, 280:11740-11748.
  • [42]Zhang JP, Zeng C, Xu L, Gong J, Fang JH, Zhuang SM: MicroRNA-148a suppresses the epithelial-mesenchymal transition and metastasis of hepatoma cells by targeting Met/Snail signaling.Oncogene 2013, Epub ahead of print.
  • [43]Tsubaki M, Komai M, Fujimoto SI, Itoh T, Imano M, Sakamoto K, Shimaoka H, Takeda T, Ogawa N, Mashimo K, Fujiwara D, Mukai J, Sakaguchi K, Satou T, Nishida S: Activation of NF-κB by the RANKL/RANK system up-regulates snail and twist expressions and induces epithelial-to-mesenchymal transition in mammary tumor cell lines. J Exp Clin Cancer Res 2013, 32:62.
  • [44]Julien S, Puig I, Caretti E, Bonaventure J, Nelles L, van Roy F, Dargemont C, de Herreros AG, Bellacosa A, Larue L: Activation of NF-κB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene 2007, 26:7445-7456.
  • [45]Cheng JC, Chang HM, Leung P: TGF-Beta1 inhibits trophoblast cell invasion by inducing snail-mediated down-regulation of ve-cadherin. J Biol Chem 2013, 288:33181-33192.
  • [46]Horiguchi K, Shirakihara T, Nakano A, Imamura T, Miyazono K, Saitoh M: Role of Ras signaling in the induction of snail by transforming growth factor-beta. J Biol Chem 2009, 284:245-253.
  • [47]Wu Y, Evers BM, Zhou BP: Small C-terminal domain phosphatase enhances snail activity through dephosphorylation. J Biol Chem 2009, 284:640-648.
  • [48]Jiang GM, Wang HS, Zhang F, Zhang KS, Liu ZC, Fang R, Wang H, Cai SH, Du J: Histone deacetylase inhibitor induction of epithelial-mesenchymal transitions via up-regulation of Snail facilitates cancer progression. Biochim Biophys Acta 1833, 2013:663-671.
  • [49]Takeichi M: Functional correlation between cell adhesive properties and some cell surface proteins. J Cell Biol 1977, 75:464-474.
  • [50]Berx G, Staes K, van Hengel J, Molemans F, Bussemakers M, von Bokhoven A, van Roy F: Cloning and characterization of the human invasion suppressor gene E-cadherin (CDH1). Genomics 1995, 26:281-289.
  • [51]Van Roy F, Berx G: The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci 2008, 65:3756-3788.
  • [52]Takeichi M, Matsunami H, Inoue T, Kimura Y, Suzuki S, Tanaka T: Roles of cadherins in patterning of the developing brain. Dev Neurosci 1997, 19:86-87.
  • [53]Vestweber D, Kemler R: Identification of a putative cell adhesion domain of uvomorulin. EMBO J 1985, 4:3393-3398.
  • [54]Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA: The transcription factor Snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000, 2:76-83.
  • [55]Larue L, Ohsugi M, Hirchenhain J, Kemler R: E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc Natl Acad Sci U S A 1994, 91:8263-8267.
  • [56]Dong C, Wu Y, Yao J, Wang Y, Yu Y, Rychahou P, Evers B, Zhou B: G9a interacts with snail and is critical for snail-mediated E-cadherin repression in human breast cancer. J Clin Investig 2012, 122:1469-1486.
  • [57]Hou Z, Peng H, Ayyanathan K, Yan KP, Langer EM, Longmore GD, Rauscher FJ III: The LIM protein AJUBA recruits protein arginine methyltransferase 5 to mediate SNAIL-dependent transcriptional repression. Mol Cell Biol 2008, 28:3198-3207.
  • [58]Shi Y, Whetstine JR: Dynamic regulation of histone lysine methylation by demethylases. Mol Cell 2007, 25:1-14.
  • [59]Peinado H, Ballestar E, Esteller M, Cano A: Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol 2004, 24:306-319.
  • [60]Lin Y, Wu Y, Li J, Dong C, Ye X, Chi YI, Evers BM, Zhou BP: The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase 1. EMBO J 2010, 29:1803-1816.
  • [61]Dong C, Wu Y, Wang Y, Wang C, Kang T, Rychahou PG, Chi YI, Evers BM, Zhou BP: Interaction with Suv39H1 is critical for Snail-mediated E-cadherin repression in breast cancer. Oncogene 2013, 32:1351-1362.
  • [62]Yeung K, Seitz T, Li S, Janosch P, McFerran B, Kaiser C, Fee F, Katsanakis KD, Rose DW, Mischak H, Sedivy JM, Kolch W: Suppression of Raf-1 kinase activity and MAP kinase signaling by RKIP. Nature 1999, 401:173-177.
  • [63]Yeung K, Rose DW, Dhillon AS, Yaros D, Gusafsson M, Chatterjee D, McFerran B, Wyche J, Kolch W, Sedivy JM: Raf kinase inhibitor protein interacts with NF-kappaB-inducing kinase and TAK1 and inhibits NF-kappaB activation. Mol Cell Biol 2001, 21:7201-7217.
  • [64]Chatterjee D, Bai Y, Wang Z, Beach S, Mott S, Roy R, Braastad C, Sun Y, Mukhopadhyay A, Aggarwal BB, Darnowski J, Pantazis P, Wyche J, Fu Z, Kitagwa Y, Keller ET, Sedivy JM, Yeung KC: RKIP sensitizes prostate and breast cancer cells to drug-induced apoptosis. J Biol Chem 2004, 279:17515-17523.
  • [65]Park S, Yeung ML, Beach S, Shields JM, Yeung KC: RKIP downregulates B-Raf kinase activity in melanoma cancer cells. Oncogene 2005, 24:3535-3540.
  • [66]Al-Mulla F, Hagan S, Behbehani AI, Bitar MS, George SS, Going JJ, Garcia JJ, Scott L, Fyfe N, Murray GI, Kolch W: Raf kinase inhibitor protein expression in a survival analysis of colorectal cancer patients. J Clin Oncol 2006, 24:5672-5679.
  • [67]Fu Z, Kitagawa Y, Shen R, Shah R, Mehra R, Rhodes D, Keller PJ, Mizokami A, Dunn R, Chinnaiyan AM, Yao Z, Keller ET: Metastasis suppressor gene Raf kinase inhibitor protein (RKIP) is a novel prognostic marker in prostate cancer. Prostate 2005, 66:248-256.
  • [68]Beach S, Tang H, Park S, Dhillon AS, Keller ET, Kolch W, Yeung KC: Snail is a repressor of RKIP transcription in metastatic prostate cancer cells. Oncogene 2008, 27:2243-2248.
  • [69]Vazquez F, Devreotes P: Regulation of PTEN Function as a PIP3 Gatekeeper through Membrane. Cell Cycle 2006, 5:1523-1527.
  • [70]Escriva M, Peiro S, Herranz H, Villagrasa P, Dave N, Montserrat-Sentis B, Murray SA, Franci C, Gridley T, Virtanen I, Garcia de herreros A: Repression of PTEN Phosphatase by Snail1 Transcriptional Factor during Gamma Radiation-Induced Apoptosis. Mol Cell Biol 2008, 28:1528-1540.
  • [71]Stambolic V, MacPherson D, Sas D, Lin Y, Snow B, Jang Y, Benchimol S, Mak TW: Regulation of PTEN transcription by p53. Mol Cell 2001, 8:317-325.
  • [72]Yamada KM, Araki M: Tumor suppressor PTEN: modulator of cell signalling, growth, migration and apoptosis. J Cell Sci 2002, 114:2375-2382.
  • [73]Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S: Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 1993, 123:1777-1788.
  • [74]Ando-Akatsuka Y, Saitou M, Hirase T, Kishi M, Sakakibara A, Itoh M, Yonemura S, Furuse M, Tsukita S: Interspecies diversity of the occludin sequence: cDNA cloning of human, mouse, dog, and rat-kangaroo homologues. J Cell Biol 1996, 133:43-47.
  • [75]Ikenouchi J, Matsuda M, Furuse M, Tsukita S: Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci 2003, 116:1959-1967.
  • [76]Findley M, Koval M: Regulation and roles for claudin-family tight junction proteins. IUBMB Life 2009, 61:431-437.
  • [77]Martinez-Estrada O, Culleres A, Vilaro S: The transcription factors Slug and Snail act as repressors of Claudin-1 expression in epithelial cells. Biochem J 2006, 394:449-457.
  • [78]Martin T, Jiang W: Loss of tight junction barrier function and its role in cancer metastasis. BBA Biomembranes 2009, 1788:872-891.
  • [79]Zaretsky J, Barnea I, Aylon Y, Gorivodsky M, Wreschner D, Keydar I: MUC1 gene overexpressed in breast cancer: structure and transcriptional activity of the MUC1 promoter and role of estrogen receptor alpha (ERalpha) in regulation of the MUC1 gene expression. Mol Cancer 2006, 5:57.
  • [80]Brayman M, Thathiah A, Carson D: MUC1: a multifunctional cell surface component of reproductive tissue epithelia. Reprod Biol Endocrinol 2004, 2:4.
  • [81]Hollingsworth M, Swanson B: Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer 2004, 4:45-60.
  • [82]Gendler S, Spicer A: Epithelial mucin genes. Annu Rev Physiol 1995, 57:607-634.
  • [83]Guaita S, Puig I, Franci C, Garrido M, Dominguez D, Batlle E, Sancho E, Dedhar S, De Herreros AG, Baulida J: Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. J Biol Chem 2002, 277:39209-39216.
  • [84]Sanchez-Tillo E, Lazaro A, Torrent R, Cuatrecasas M, Vaquero EC, Castells A, Engel P, Postigo A: ZEB1 represses E-cadherin and induces an EMT by recruiting the SWI/SNF chromatin-remodeling protein BRG1. Oncogene 2010, 29:3490-3500.
  • [85]Satelli A, Li S: Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci 2011, 68:3033-3046.
  • [86]Lilienbaum A, Paulin D: Activation of the human vimentin gene by the Tax human T-cell leukemia virus. I. Mechanisms of regulation by the NF-kappa B transcription factor. J Biol Chem 1993, 268:2180-2188.
  • [87]Wu Y, Zhang X, Salmon M, Lin X, Zehner ZE: TGFbeta1 regulation of vimentin gene expression during differentiation of the C2C12 skeletal myogenic cell line requires Smads, AP-1 and Sp1 family members. Biochim Biophys Acta 2007, 1773:427-439.
  • [88]Zhu QS, Rosenblatt K, Huang KL, Lahat G, Brobey R, Bolshakov S, Nguyen T, Ding Z, Belousov R, Bill K, Luo X, Lazar A, Dicker A, Mills GB, Hung MC, Lev D: Vimentin is a novel AKT1 target mediating motility and invasion. Oncogene 2011, 30:457-470.
  • [89]Gilles C, Polette M, Mestdagt M, Nawrocki-Raby B, Ruggeri P, Birembaut P, Foidart JM: Transactivation of vimentin by beta-catenin in human breast cancer cells. Cancer Res 2003, 63:2658-2664.
  • [90]Lang SH, Hyde C, Reid IN, Hitchcock IS, Hart CA, Bryden AA, Villette JM, Stower MJ, Maitland NJ: Enhanced expression of vimentin in motile prostate cell lines and in poorly differentiated and metastatic prostate carcinoma. Prostate 2002, 52:253-263.
  • [91]Zhao Y, Yan Q, Long X, Chen X, Wang Y: Vimentin affects the mobility and invasiveness of prostate cancer cells. Cell Biochem Funct 2008, 26:571-577.
  • [92]Hynes RO, Yamada KM: Fibronectins: multifunctional modular glycoproteins. J Cell Biol 1982, 95:369-377.
  • [93]Mosher DF: Fibronectin. Academic Press, Inc., San Diego; 1989.
  • [94]Pankov R, Yamada K: Fibronectin at a glance. J Cell Sci 2002, 115:3861-3863.
  • [95]Benecky MJ, Kolvenback CG, Amrani DL, Mosesson MN: Evidence that binding to the carboxyl-terminal heparin-binding domain (HepII) dominates the interaction between plasma fibronectin and heparin. Biochem 1988, 27:7565-7571.
  • [96]Ingham KC, Brew SA, Atha DH: Interaction of heparin with fibronectin and isolated fibronectin domains. Biochem J 1990, 272:605-611.
  • [97]Mostafavi-Pour Z, Askari JA, Whittard JD, Humphries MJ: Identification of a novel heparin-binding site in the alternatively spliced IIICS region of fibronectin: roles of integrins and proteoglycans in cell adhesion to fibronectin splice variants. Matrix Biol 2001, 20:63-73.
  • [98]Liao YF, Gotwals PJ, Koteliansky VE, Sheppard D, Van De Water L: The EIIIA segment of fibronectin is a ligand for integrins α9β1 andα 4β1 providing a novel mechanism for regulating cell adhesion by alternative splicing. J Biol Chem 2002, 277:14467-14474.
  • [99]Erat MC, Sladek B, Campbell ID, Vakonakis I: Structural analysis of collagen type I interactions with human fibronectin reveals a cooperative binding mode. J Biol Chem 2013, 288:17441-17450.
  • [100]George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO: Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 1993, 119:1079-1091.
  • [101]Moll R, Franke WW, Schiller DL, Geiger B, Krepler R: The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 1982, 31:11-24.
  • [102]Fuchs E, Cleveland DW: A structural scaffolding of intermediate filaments in health and disease. Science 1998, 279:514-519.
  • [103]Coulombe PA, Omary MB: ‘Hard’ and ‘soft’ principles defining the structure, function and regulation of keratin intermediate filaments. Curr Opin Cell Biol 2002, 14:110-122.
  • [104]Galarneau L, Loranger A, Gilbert S, Marceau N: Keratins modulate hepatic cell adhesion, size and G1/S transition. Exp Cell Res 2007, 313:179-194.
  • [105]Oshima RG, Baribault H, Caulín C: Oncogenic regulation and function of keratins 8 and 18. Cancer Metastasis Rev 1996, 15:445-471.
  • [106]Lin MH, Liu SY, Su HJ, Liu YC: Functional role of matrix metalloproteinase 28 in the oral squamous cell carcinoma. Oral Oncol 2006, 42:907-913.
  • [107]Birkedal-Hansen H, Moore WG, Bodden MK, Windsor LJ, Birkedal-Hansen B, DeCarlo A, Engler JA: Matrix Metalloproteinases: a review. Crit Rev Oral Biol Med 1993, 4:197-250.
  • [108]Senior RM, Griffin GL, Fliszar CJ, Shapiro SD, Goldberg GI, Welgus HG: Human 92- and 72- kilodalton type IV collagenases are elastases. J Biol Chem 1991, 266:7870-7875.
  • [109]Seltzer JL, Adams SA, Grant GA, Eisen AZ: Purification and properties of a gelatin-specific neutral protease from human skin. J Biol Chem 1981, 256:4662-4668.
  • [110]Seltzer JL, Eisen AZ, Bauer EA, Morris NP, Glanville RW, Burgeson RE: Cleavage of type VII collagen by interstitial collagenase and type IV collagenase (Gelatinase) derived from human skin. J Biol Chem 1989, 264:3822-3826.
  • [111]Gadher SJ, Schmid TM, Heck LW, Woolley DE: Cleavage of collagen type X by human synovial collagenase and neutrophil elastase. Matrix 1989, 9:109-115.
  • [112]Huhtala P, Tuuttila A, Chow LT, Lohi J, Keski-Oja J, Tryggvason K: Complete structure of the human gene for 92-kDa type IV collagenase. Divergent regulation of expression for the 92- and 72-kilodalton enzyme genes in HT-1080 cells. J Biol Chem 1991, 266:16485-16490.
  • [113]Qiao B, Johnson N, Gao J: Epithelial-mesenchymal transition in oral squamous cell carcinoma triggered by transforming growth factor-β1 is Snail family-dependent and correlates with matrix metalloproteinase-2 and -9 expressions. Int J Oncol 2010, 37:663-668.
  • [114]Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S: Metastatic potential correlates with enzymic degradation of basement membrane collagen. Nature 1980, 284:67-68.
  • [115]Garbisa S, Pozzati R, Muschel RJ, Saffiotti U, Ballin M, Goldfarb RH, Khoury G, Liotta LA: Secretion of type IV collagenolytic protease and metastatic phenotype: induction by transfection with C-Ha-ras but not C-Ha-ras plus Ad2-Ela. Cancer Res 1987, 47:1523-1528.
  • [116]Nakajima M, Welch DR, Belloni PN, Nicholson GL: Degradation of basement membrane type IV collagen and lung subendothelial matrix by rat mammary adenocarcinoma cell clones of differing metastatic potentials. Cancer Res 1987, 47:4869-4876.
  • [117]Bernhard EJ, Muschel RJ, Hughes EN: Mr 92,000 gelatinase release correlates with the metastatic phenotype in transformed rat embryo cells. Cancer Res 1990, 50:3872-3877.
  • [118]Mahabir R, Tanino M, Elmansuri A, Wang L, Kimura T, Itoh T, Ohba Y, Nishihara H, Shirato H, Tsuda M, Tanaka S: Sustained elevation of Snail promotes glial-mesenchymal transition after irradiation in malignant glioma. Neuro Oncol 2013, 0:1-15.
  • [119]Porfiri E, Rubinfeld B, Albert I, Hovanes K, Waterman M, Polakis P: Induction of a β-catenin-LEF-1 complex by wnt-1 and transforming mutants of β-catenin. Oncogene 1997, 15:2833-2839.
  • [120]Rubinfeld B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P: Stabilization of β-catenin by genetic defects in melanoma cell lines. Science 1997, 275:1790-1792.
  • [121]Jamora C, DasGupta R, Kocieniewski P, Fuchs E: Links between signal transduction, transcription and adhesion in epithelial bud development. Nature 2003, 422:317-322.
  • [122]Kim K, Lu Z, Hay ED: Direct evidence for a role of betacatenin/LEF-1 signalling pathway in the induction of EMT. Cell Biol Int 2002, 26:463-476.
  • [123]Waterman ML: Lymphoid enhancer factor/T cell factor expression in colorectal cancer. Cancer Metastasis Rev 2004, 23:41-52.
  • [124]Medici D, Hay E, Goodenough D: Cooperation between Snail and LEF-1 transcription factors is essential for TGF-β1-induced epithelial-mesenchymal transition. Mol Biol Cell 2006, 17:1871-1879.
  • [125]De Craene B, van Roy F, Berx G: Unraveling signaling cascades for the Snail family of transcription factors. Cell Signal 2005, 17:535-547.
  • [126]Elston CW, Ellis IO: Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience with long-term follow-up. Histopathology 1991, 19:403-410.
  • [127]Dieterich M, Goodman SN, Rojas-Corona RR, Emralino AB, Jimenez-Joseph D, Sherman ME: Multivariate analysis of prognostic features in malignant pleural effusions from breast cancer patients. Acta Cytol 1994, 38:945-952.
  • [128]Blanco MJ, Moreno-Bueno G, Sarrio D, Locascio A, Cano A, Palacios J, Nieto MA: Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene 2002, 21:3241-3246.
  • [129]Elloul S, Bukholt Elstrand M, Nesland JM, Trope CG, Kvalheim G, Goldberg I, Reich R, Davidson B: Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer 2005, 103:1631-1643.
  • [130]Jiao W, Miyazaki K, Kitajima Y: Inverse correlation between E-cadherin and Snail expression in hepatocellular carcinoma cell lines in vitro and in vivo. Br J Cancer 2002, 86:98-101.
  • [131]Miyoshi A, Kitajima Y, Miyazaki K: Snail accelerates cancer invasion by upregulating MMP expression and is associated with poor prognosis of hepatocellular carcinoma. Br J Cancer 2005, 92:252-258.
  • [132]Woo HY, Min AL, Choi JY, Bae SH, Yoon SK, Jung CK: Clinicopathologic significance of the expression of Snail in hepatocellular carcinoma. Korean J Hepatol 2011, 17:12-18.
  • [133]Elloul S, Silins I, Trope CG, Benshushan A, Davidson B, Reich R: Expression of E-cadherin transcriptional regulators in ovarian carcinoma. Virchows Arch 2006, 449:520-528.
  • [134]Rosiavitz E, Becker I, Specht K, Fricke E, Luber B, Busch R, Hofler H, Becker KF: Differential expression of the epithelial-mesenchymal transition regulators Snail, SIP1, and Twist in gastric cancer. Am J Pathol 2002, 161:1881-1891.
  • [135]Shin NR, Jeong EH, Choi CI, Moon HJ, Kwon CH, Chu IS, Kim GH, Jeon TY, Kim DH, Lee JH, Park do Y: Overexpression of Snail is associated with lymph node metastasis and poor prognosis in patients with gastric cancer. BMC Cancer 2012, 12:521.
  • [136]Yokoyama K, Kamata N, Hayashi E, Hoteiya T, Ueda N, Fujimoto R, Nagayama M: Reverse correlation of E-cadherin and snail expression in oral squamous cell carcinoma cells in vitro. Oral Oncol 2001, 37:65-71.
  • [137]Hotz B, Arndt M, Dullat S, Bhargava S, Buhr HJ, Hotz HG: Epithelial to mesenchymal transition: expression of the regulators snail, slug, and twist in pancreatic cancer. Clin Cancer Res 2007, 13:4769-4776.
  • [138]Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ: Cancer statistics, 2009. CA Cancer J Clin 2009, 59:225-249.
  • [139]Roy H, Smyrk T, Koetsier J, Victor T, Wali R: The transcriptional repressor SNAIL is overexpressed in human colon cancer. Dig Dis Sci 2005, 50:42-46.
  • [140]Fan F, Samuel S, Evans KW, Lu J, Xia L, Zhou Y, Sceusi E, Tozzi F, Ye XC, Mani SA, Ellis LM: Overexpression of Snail induces epithelial-mesenchymal transition and a cancer stem cell-like phenotype in human colorectal cancer cells. Cancer Med 2012, 1:5-16.
  • [141]Yu Q, Zhang K, Wang X, Liu X, Zhang Z: Expression of transcription factors snail, slug, and twist in human bladder carcinoma. J Exp Clin Cancer Res 2010, 29:119.
  • [142]Bruyere F, Namdarian B, Corcoran NM, Pedersen J, Ockrim J, Voelzke BB, Mete U, Costello AJ, Hovens CM: Snail expression is an independent predictor of tumor recurrence in superficial bladder cancers. Urol Oncol 2010, 28:591-596.
  • [143]Poser I, Dominguez D, Garcia de Herreros A, Varnai A, Buettner R, Bosserhoff AK: Loss of E-cadherin expression in melanoma cells involves up-regulation of the transcriptional repressor Snail. J Biol Chem 2001, 276:24661-24666.
  • [144]Kudo-Saito C, Shirako H, Takeuchi T, Kawakami Y: Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell 2009, 15:195-206.
  • [145]Saito T, Oda Y, Tsuneyoshi M: E-cadherin gene mutations frequently occur in synovial sarcoma as a determinant of histological features. Am J Pathol 2001, 159:2117-2124.
  • [146]Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin 2011, 61:69-90.
  • [147]Delahunt B, Miller RJ, Srigley JR, Evans AJ, Samaratunga H: Gleason grading: past, present and future. Histopathology 2012, 60:75-86.
  • [148]Pecina-Slaus N: Tumor suppressor gene E-cadherin and its role in normal and malignant cells. Cancer Cell Int 2003, 3:17-18.
  • [149]Edwards IJ: Proteoglycans in prostate cancer. Nat Rev Urol 2012, 21:196-206.
  • [150]Smith B, Odero-Marah V: The role of Snail in prostate cancer. Cell Adh Migr 2012, 6:433-441.
  • [151]Nackaerts K, Verbeken E, Deneffe G, Vanderschueren B, Demedts M, David G: Heparan sulfate proteoglycan expression in human lung-cancer cells. Int J Cancer 1997, 74:335-345.
  • [152]Poblete C, Fulla J, Gallardo M, Munoz V, Castellon EA, Gallegos I, Contreras HR: Increased SNAIL expression and low syndecan levels are associated with high Gleason grade in prostate cancer. Int J Oncol 2014, 44:647-654.
  • [153]Chen Z, Li S, Huang K, Zhang Q, Wang J, Li X, Hu T, Wang S, Yang R, Jia Y, Sun H, Tang F, Zhou H, Shen J, Ma D, Wang S: The nuclear protein expression levels of SNAI1 and ZEB1 are involved in the progression and lymph node metastasis of cervical cancer via the epithelial-mesenchymal transition pathway. Hum Pathol 2013, 44:2097-2105.
  • [154]Reya T, Morrison SJ, Clarke MF, Weissman IL: Stem cells, cancer, and cancer stem cells. Nature 2001, 414:105-111.
  • [155]Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003, 100:3983-3988.
  • [156]Jones RJ, Matsui WH, Smith BD: Cancer stem cells: are we missing the target? J Natl Cancer Inst 2004, 96:583-585.
  • [157]Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126:663-676.
  • [158]Moon JH, Heo JS, Kim JS, Jun EK, Lee JH, Kim A, Kim J, Kim J, Whang KY, Kang YK, Yeo S, Lim HJ, Han DW, Kim DW, Oh S, Yoon BS, Schöler HR, You S: Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1. Cell Res 2011, 21:1305-1315.
  • [159]Moon JH, Yun W, Kim J, Hyeon S, Kang PJ, Park G, Kim A, Oh S, Whang KY, Kim DW, Yoon BS, You S: Reprogramming of mouse fibroblasts into induced pluripotent stem cells with Nanog. Biochem Biophys Res Commun 2013, 431:444-449.
  • [160]Zhu L, Qin H, Li PY, Xu SN, Pang HF, Zhao HZ, Li DM, Zhao Q: Response gene to complement-32 enhances metastatic phenotype by mediating transforming growth factor beta-induced epithelial-mesenchymal transition in human pancreatic cancer cell line BxPC-3. J Exp Clin Cancer Res 2012, 31:29.
  • [161]Huang J, Song H, Liu B, Yu B, Wang R, Chen L: Expression of Notch-1 and its clinical significance in different histological subtypes of human lung adenocarcinoma. J Exp Clin Cancer Res 2013, 32:84.
  • [162]Fujii R, Imanishi Y, Shibata K, Sakai N, Sakamoto K, Shigetomi S, Habu N, Otsuka K, Sato Y, Watanabe Y, Ozawa H, Tomita T, Kameyama K, Fujii M, Ogawa K: Restoration of E-cadherin expression by selective Cox-2 inhibition and the clinical relevance of the epithelial-to-mesenchymal transition in head and neck squamous cell carcinoma. J Exp Clin Cancer Res 2014, 33:40.
  • [163]Zhuo W, Wang Y, Zhuo X, Zhang Y, Ao X, Chen Z: Knockdown of Snail, a novel zinc finger transcription factor, via RNA interference increases A549 cell sensitivity to cisplatin via JNK/mitochondrial pathway. Lung Cancer 2008, 62:8-14.
  • [164]Hsu DS, Lan HY, Huang CH, Tai SK, Chang SY, Tsai TL, Chang CC, Tzeng CH, Wu KJ, Kao JY, Yang MH: Regulation of excision repair cross-complementation group 1 by Snail contributes to cisplatin resistance in head and neck cancer. Clin Cancer Res 2010, 16:4561-4571.
  • [165]Haslehurst AM, Koti M, Dharsee M, Nuin P, Evans K, Geraci J, Childs T, Chen J, Li J, Weberpals J, Davey S, Squire J, Park PC, Feilotter H: EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer 2012, 12:91.
  • [166]Kurrey NK, Jalgaonkar SP, Joglekar AV, Ghanate AD, Chaskar PD, Doiphode RY, Bapat SA: Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells 2009, 27:2059-2068.
  • [167]Yin T, Wang C, Liu T, Zhao G, Zha Y, Yang M: Expression of Snail in pancreatic cancer promotes metastasis and chemoresistance. J Surg Res 2007, 141:196-203.
  • [168]Vega S, Morales AV, Ocana OH, Valdes F, Fabregat I, Nieto MA: Snail blocks the cell cycle and confers resistance to cell death. Genes Dev 2004, 18:1131-1141.
  • [169]Baritaki S, Yeung K, Palladino M, Berenson J, Bonavida B: Pivotal roles of snail inhibition and RKIP induction by the proteasome inhibitor NPI-0052 in tumor cell chemoimmunosensitization. Cancer Res 2009, 69:8376-8385.
  • [170]Jazirehi AR, Huerta-Yepez S, Cheng G, Bonavida B: Rituximab (chimeric anti-CD20 monoclonal antibody) inhibits the constitutive nuclear factor-{kappa}B signaling pathway in non-Hodgkin's lymphoma B-cell lines: role in sensitization to chemotherapeutic drug-induced apoptosis. Cancer Res 2005, 65:264-276.
  • [171]Vega MI, Baritaki S, Huerta-Yepez S, Martinez-Paniagua MA, Bonavida B: A potential mechanism of rituximab-induced inhibition of tumorgrowth through its sensitization to tumor necrosis factor-related apoptosis-inducing ligand-expressing host cytotoxic cells. Leuk Lymphoma 2011, 52:108-121.
  • [172]Akalay I, Janji B, Hasmim M, Noman MZ, Thiery JP, Mami-Chouaib F, Chouaib S: EMT impairs breast carcinoma cell susceptibility to CTL-mediated lysis through autophagy induction. Autophagy 2013, 9:1104-1106.
  • [173]Akalay I, Janji B, Hasmim M, Noman MZ, André F, De Cremoux P, Bertheau P, Badoual C, Vielh P, Larsen AK, Sabbah M, Tan TZ, Keira JH, Hung NT, Thiery JP, Mami-Chouaib F, Chouaib S: Epithelial-to mesenchymal transition and autophagy induction in breast carcinoma promote escape from T-cell-mediated lysis. Cancer Res 2013, 73:2418-2427.
  • [174]Lee SH, Lee SJ, Chung JY, Jung YS, Choi SY, Hwang SH, Choi D, Ha NC, Park BJ: p53, secreted by K-Ras-Snail pathway, is endocytosed by K-Ras-mutated cells; implication of target-specific drug delivery and early diagnostic marker. Oncogene 2009, 28:2005-2014.
  • [175]Lee SH, Shen GN, Jung YS, Lee SJ, Chung JY, Kim HS, Xu Y, Choi Y, Lee JW, Ha NC, Song GY, Park BJ: Antitumor effect of novel small chemical inhibitors of Snail-p53 binding in K-Ras-mutated cancer cells. Oncogene 2010, 29:4576-4587.
  • [176]Harney A, Meade T, LaBonne C: Targeted inactivation of snail family EMT regulatory factors by a Co(III)-Ebox conjugate. PLoS One 2012, 7:e32318.
  • [177]Javaid S, Zhang J, Anderssen E, Black JC, Wittner BS, Tajima K, Ting DT, Smolen GA, Zubrowski M, Desai R, Maheswaran S, Ramaswamy S, Whetstine JR, Haber DA: Dynamic chromatin modification sustains epithelial-mesenchymal transition following inducible expression of Snail-1. Cell Rep 2013, 5:1679-1689.
  • [178]Shah P, Gau Y, Sabnis G: Histone deacetylase inhibitor entinostat reverses epithelial to mesenchymal transition of breast cancer cells by reversing the repression of E-cadherin. Breast Cancer Res Treat 2014, 143:99-111.
  • [179]Hatzivassiliou G, Haling JF, Chen H, Song K, Price S, Heald R, Hewitt JF, Zak M, Peck A, Orr C, Merchant M, Hoeflich KP, Chan J, Luoh SM, Anderson DJ, Ludlam MJ, Wiesmann C, Ultsch M, Friedman LS, Malek S, Belvin M: Mechanism of MEK inhibition determines efficacy in mutant KRAS- versus BRAF-driven cancers. Nature 2013, 501:232-236.
  • [180]Miller C, Oliver K, Farley J: MEK1/2 inhibitors in the treatment of gynecologic malignancies. Gynecol Oncol 2014, 133:128-137.
  • [181]McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Franklin RA, Montalto G, Cervello M, Libra M, Candido S, Malaponte G, Mazzarino MC, Fagone P, Nicoletti F, Bäsecke J, Mijatovic S, Maksimovic-Ivanic D, Milella M, Tafuri A, Chiarini F, Evangelisti C, Cocco L, Martelli AM: Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance. Oncotarget 2012, 3:1068-1111.
  • [182][http://clinicaltrials.gov] webcite NIH Database.. .
  • [183]Mimasu S, Sengoku T, Fukuzawa S, Umehara T, Yokoyama S: Crystal structure of histone demethylase LSD1 and tranylcypromine at 2.25 Å. Biochem Biophys Res Commun 2008, 366:15-22.
  • [184][http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=444732&loc=ec_rcs] webcite Pubchem Database.. []
  • [185][http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=4688&loc=ec_rcs] webcite Pubchem Database.. []
  • [186][http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=6918837] webcite Pubchem Database.. []
  • [187][http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=4261] webcite Pubchem Database.. []
  文献评价指标  
  下载次数:52次 浏览次数:31次