期刊论文详细信息
Journal of Neuroinflammation
Spatial and temporal correlation in progressive degeneration of neurons and astrocytes in contusion-induced spinal cord injury
Eun-hye Joe3  Byung G Kim3  Ilo Jou3  Jong-hyeon Kim2  An Tran Nguyen4  Hae Young Shin1  Dong Hoon Hwang1  Beomsue Kim4  Hey-Kyeong Jeong2  Kyoung-Jin Min4 
[1] Institute for Medical Sciences, Ajou University School of Medicine, Suwon, Korea;Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Korea;Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, 442-721, Korea;Department of Pharmacology, Ajou University School of Medicine, san-5 Woncheon-dong Youngtong-gu, Suwon, Kyunggi-do, 442-721, Korea
关键词: Secondary injury;    Spinal cord injury;    Astrocytes;    Monocytes;    Microglia;   
Others  :  1212593
DOI  :  10.1186/1742-2094-9-100
 received in 2011-11-03, accepted in 2012-04-10,  发布年份 2012
PDF
【 授权许可】

   
2012 Min et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150614100414927.pdf 3081KB PDF download
【 参考文献 】
  • [1]Taoka Y, Okajima K: Spinal cord injury in the rat. Prog Neurobiol 1998, 56:341-358.
  • [2]Hausmann ON: Post-traumatic inflammation following spinal cord injury. Spinal Cord 2003, 41:369-378.
  • [3]Nimmerjahn A, Kirchhoff F, Helmchen F: Resting microglial cells are highly dynamic surveillants of brain parenchymain vivo. Science 2005, 308:1314-1318.
  • [4]Lee DY, Oh YJ, Jin BK: Thrombin-activated microglia contribute to death of dopaminergic neurons in rat mesencephalic cultures: dual roles of mitogen-activated protein kinase signaling pathways. Glia 2005, 51:98-110.
  • [5]Meda L, Cassatella MA, Szendrei GI, Otvos L, Baron P, Villalba M, Ferrari D, Rossi F: Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 1995, 374:647-650.
  • [6]Chao CC, Hu S, Molitor TW, Shaskan EG, Peterson PK: Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 1992, 149:2736-2741.
  • [7]Polazzi E, Monti B: Microglia and neuroprotection: fromin vitrostudies to therapeutic applications. Prog Neurobiol 2010, 92:293-315.
  • [8]Wee YV: Inflammation in neurological disorders: a help or a hindrance? Neuroscientist 2010, 16:408-420.
  • [9]Jeong HK, Ji KM, Kim B, Kim J, Jou I, Joe EH: Inflammatory responses are not sufficient to cause delayed neuronal death in ATP-induced acute brain injury. PLoS One 2010, 5:e13756.
  • [10]Ji KA, Yang MS, Jeong HK, Min KJ, Kang SH, Jou I, Joe EH: Resident microglia die and infiltrated neutrophils and monocytes become major inflammatory cells in lipopolysaccharide-injected brain. Glia 2007, 55:1577-1588.
  • [11]Badaut J, Lasbennes F, Magistretti PJ, Regli L: Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab 2002, 22:367-378.
  • [12]Raps SP, Lai JC, Hertz L, Cooper AJ: Glutathione is present in high concentrations in cultured astrocytes but not in cultured neurons. Brain Res 1989, 493:398-401.
  • [13]Tsacopoulos M, Magistretti PJ: Metabolic coupling between glia and neurons. J Neurosci 1996, 16:877-885.
  • [14]Muller HW, Seifert W: A neurotrophic factor (NTF) released from primary glial cultures supports survival and fiber outgrowth of cultured hippocampal neurons. J Neurosci Res 1982, 8:195-204.
  • [15]Gegelashvili G, Schousboe A: Cellular distribution and kinetic properties of high-affinity glutamate transporters. Brain Res Bull 1998, 45:233-238.
  • [16]Olsen ML, Higashimori H, Campbell SL, Hablitz JJ, Sontheimer H: Functional expression of Kir4.1 channels in spinal cord astrocytes. Glia 2006, 53:516-528.
  • [17]Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF: Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 1996, 16:675-686.
  • [18]Ermakova IV, Loseva EV, Hodges H, Sinden J: Transplantation of cultured astrocytes attenuates degenerative changes in rats with kainic acid-induced brain damage. Bull Exp Biol Med 2005, 140:677-681.
  • [19]Myer DJ, Gurkoff GG, Lee SM, Hovda DA, Sofroniew MV: Essential protective roles of reactive astrocytes in traumatic brain injury. Brain 2006, 129:2761-2772.
  • [20]Bao F, John SM, Chen Y, Mathison RD, Weaver LC: The tripeptide phenylalanine-(D) glutamate-(D) glycine modulates leukocyte infiltration and oxidative damage in rat injured spinal cord. Neuroscience 2006, 140:1011-1022.
  • [21]Matsumoto H, Kumon Y, Watanabe H, Ohnishi T, Shudou M, Ii C, Takahashi H, Imai Y, Tanaka J: Antibodies to CD11b, CD68, and lectin label neutrophils rather than microglia in traumatic and ischemic brain lesions. J Neurosci Res 2007, 85:994-1009.
  • [22]Newman SL, Henson JE, Henson PM: Phagocytosis of senescent neutrophils by human monocyte-derived macrophages and rabbit inflammatory macrophages. J Exp Med 1982, 156:430-442.
  • [23]Yawata I, Takeuchi H, Doi Y, Liang J, Mizuno T, Suzumura A: Macrophage-induced neurotoxicity is mediated by glutamate and attenuated by glutaminase inhibitors and gap junction inhibitors. Life Sci 2008, 82:1111-1116.
  • [24]Koennecke LA, Zito MA, Proescholdt MG, van Rooijen N, Heyes MP: Depletion of systemic macrophages by liposome-encapsulated clodronate attenuates increases in brain quinolinic acid during CNS-localized and systemic immune activation. J Neurochem 1999, 73:770-779.
  • [25]Kim HM, Hwang DH, Choi JY, Park CH, Suh-Kim H, Kim SU, Kim BG: Differential and cooperative actions of Olig1 and Olig2 transcription factors on immature proliferating cells after contusive spinal cord injury. Glia 2011, 59:1094-1106.
  • [26]Kim GM, Xu J, Xu J, Song SK, Yan P, Ku G, Xu XM, Hsu CY: Tumor necrosis factor receptor deletion reduces nuclear factor-kappaB activation, cellular inhibitor of apoptosis protein 2 expression, and functional recovery after traumatic spinal cord injury. J Neurosci 2001, 21:6617-6625.
  • [27]Kuhn PL, Wrathall JR: A mouse model of graded contusive spinal cord injury. J Neurotrauma 1998, 15:125-140.
  • [28]Lehrmann E, Kiefer R, Christensen T, Toyka KV, Zimmer J, Diemer NH, Hartung HP, Finsen B: Microglia and macrophages are major sources of locally produced transforming growth factor-beta1 after transient middle cerebral artery occlusion in rats. Glia 1998, 24:437-448.
  • [29]Batchelor PE, Liberatore GT, Wong JY, Porritt MJ, Frerichs F, Donnan GA, Howells DW: Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. J Neurosci 1999, 19:1708-1716.
  • [30]Sedgwick JD, Schwender S, Imrich H, Dorries R, Butcher GW, ter Meulen V: Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc Natl Acad Sci USA 1991, 88:7438-7442.
  • [31]Campanella M, Sciorati C, Tarozzo G, Beltramo M: Flow cytometric analysis of inflammatory cells in ischemic rat brain. Stroke 2002, 33:586-592.
  • [32]Bao F, Bailey CS, Gurr KR, Bailey SI, Rosas-Arellano MP, Dekaban GA, Weaver LC: Increased oxidative activity in human blood neutrophils and monocytes after spinal cord injury. Exp Neurol 2009, 215:308-316.
  • [33]Holness CL, Simmons DL: Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins. Blood 1993, 81:1607-1613.
  • [34]Martinez FO, Helming L, Gordon S: Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 2009, 27:451-483.
  • [35]Dhandapani KM, Hadman M, De Sevilla L, Wade MF, Mahesh VB, Brann DW: Astrocyte protection of neurons: role of transforming growth factor-beta signaling via a c-Jun-AP-1 protective pathway. J Biol Chem 2003, 278:43329-43339.
  • [36]Tanaka J, Toku K, Zhang B, Ishihara K, Sakanaka M, Maeda N: Astrocytes prevent neuronal death induced by reactive oxygen and nitrogen species. Glia 1999, 28:85-96.
  • [37]Huang R, Shuaib A, Hertz L: Glutamate uptake and glutamate content in primary cultures of mouse astrocytes during anoxia, substrate deprivation and simulated ischemia under normothermic and hypothermic conditions. Brain Res 1993, 618:346-351.
  • [38]Hertz L: An intense potassium uptake into astrocytes, its further enhancement by high concentrations of potassium, and its possible involvement in potassium homeostasis at the cellular level. Brain Res 1978, 145:202-208.
  • [39]Min KJ, Yang MS, Kim SU, Jou I, Joe EH: Astrocytes induce hemeoxygenase-1 expression in microglia: a feasible mechanism for preventing excessive brain inflammation. J Neurosci 2006, 26:1880-1887.
  • [40]Kim JH, Min KJ, Seol W, Jou I, Joe EH: Astrocytes in injury states rapidly produce anti-inflammatory factors and attenuate microglial inflammatory responses. J Neurochem 2010, 115:1161-1171.
  • [41]Liu D, Thangnipon W, McAdoo DJ: Excitatory amino acids rise to toxic levels upon impact injury to the rat spinal cord. Brain Res 1991, 547:344-348.
  • [42]Farooque M, Hillered L, Holtz A, Olsson Y: Changes of extracellular levels of amino acids after graded compression trauma to the spinal cord: an experimental study in the rat using microdialysis. J Neurotrauma 1996, 13:537-548.
  • [43]Young W, Koreh I, Yen V, Lindsay A: Effect of sympathectomy on extracellular potassium ionic activity and blood flow in experimental spinal cord contusion. Brain Res 1982, 253:115-124.
  • [44]Choi DW, Maulucci-Gedde M, Kriegstein AR: Glutamate neurotoxicity in cortical cell culture. J Neurosci 1987, 7:357-368.
  • [45]Takahashi S, Shibata M, Fukuuchi Y: Role of sodium ion influx in depolarization-induced neuronal cell death by high KCI or veratridine. Eur J Pharmacol 1999, 372:297-304.
  • [46]Speake T, Whitwell C, Kajita H, Majid A, Brown PD: Mechanisms of CSF secretion by the choroid plexus. Microsc Res Tech 2001, 52:49-59.
  • [47]Elkabes S, Cicco-Bloom EM, Black IB: Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci 1996, 16:2508-2521.
  • [48]Streit WJ: Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 2002, 40:133-139.
  • [49]Streit WJ: Microglia and neuroprotection: implications for Alzheimer's disease. Brain Res Brain Res Rev 2005, 48:234-239.
  • [50]Pineau I, Lacroix S: Proinflammatory cytokine synthesis in the injured mouse spinal cord: multiphasic expression pattern and identification of the cell types involved. J Comp Neurol 2007, 500:267-285.
  • [51]Hamada Y, Ikata T, Katoh S, Tsuchiya K, Niwa M, Tsutsumishita Y, Fukuzawa K: Roles of nitric oxide in compression injury of rat spinal cord. Free Radic Biol Med 1996, 20:1-9.
  • [52]Adachi K, Yimin Y, Satake K, Matsuyama Y, Ishiguro N, Sawada M, Hirata Y, Kiuchi K: Localization of cyclooxygenase-2 induced following traumatic spinal cord injury. Neurosci Res 2005, 51:73-80.
  • [53]Bolanos JP, Almeida A: Roles of nitric oxide in brain hypoxia-ischemia. Biochim Biophys Acta 1999, 1411:415-436.
  • [54]Fleming JC, Norenberg MD, Ramsay DA, Dekaban GA, Marcillo AE, Saenz AD, Pasquale-Styles M, Dietrich WD, Weaver LC: The cellular inflammatory response in human spinal cords after injury. Brain 2006, 129:3249-3269.
  • [55]Benowitz LI, Popovich PG: Inflammation and axon regeneration. Curr Opin Neurol 2011, 24:577-583.
  • [56]Lee SM, Rosen S, Weinstein P, Van Rooijen N, Noble-Haeusslein LJ: Prevention of both neutrophil and monocyte recruitment promotes recovery after spinal cord injury. J Neurotrauma 2011, 28:1893-1907.
  • [57]Pineau I, Sun L, Bastien D, Lacroix S: Astrocytes initiate inflammation in the injured mouse spinal cord by promoting the entry of neutrophils and inflammatory monocytes in an IL-1 receptor/MyD88-dependent fashion. Brain Behav Immun 2010, 24:540-553.
  • [58]Shechter R, London A, Varol C, Raposo C, Cusimano M, Yovel G, Rolls A, Mack M, Pluchino S, Martino G, Jung S, Schwartz M: Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 2009, 6:e1000113.
  • [59]Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC: Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci 1995, 15:1835-1853.
  • [60]Danbolt NC: Glutamate uptake. Prog Neurobiol 2001, 65:1-105.
  • [61]Watase K, Hashimoto K, Kano M, Yamada K, Watanabe M, Inoue Y, Okuyama S, Sakagawa T, Ogawa S, Kawashima N, Hori S, Takimoto M, Wada K, Tanaka K: Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice. Eur J Neurosci 1998, 10:976-988.
  • [62]Lepore AC, O'Donnell J, Kim AS, Yang EJ, Tuteja A, Haidet-Phillips A, O'Banion CP, Maragakis NJ: Reduction in expression of the astrocyte glutamate transporter, GLT1, worsens functional and histological outcomes following traumatic spinal cord injury. Glia 2011, 59:1996-2005.
  • [63]Liévens JC, Woodman B, Mahal A, Spasic-Boscovic O, Samuel D, Kerkerian-Le Goff L, Bates GP: Impaired glutamate uptake in the R6 Huntington's disease transgenic mice. Neurobiol Dis 2001, 8:807-821.
  • [64]Arzberger T, Krampfl K, Leimgruber S, Weindl A: Changes of NMDA receptor subunit (NR1, NR2B) and glutamate transporter (GLT1) mRNA expression in Huntington's disease–anin situhybridization study. J Neuropathol Exp Neurol 1997, 56:440-454.
  • [65]Choi DW: Ionic dependence of glutamate neurotoxicity. J Neurosci 1987, 7:369-379.
  • [66]Kaiser M, Maletzki I, Hulsmann S, Holtmann B, Schulz-Schaeffer W, Kirchhoff F, Bahr M, Neusch C: Progressive loss of a glial potassium channel (KCNJ10) in the spinal cord of the SOD1 (G93A) transgenic mouse model of amyotrophic lateral sclerosis. J Neurochem 2006, 99:900-912.
  • [67]Rozengurt N, Lopez I, Chiu CS, Kofuji P, Lester HA, Neusch C: Time course of inner ear degeneration and deafness in mice lacking the Kir4.1 potassium channel subunit. Hear Res 2003, 177:71-80.
  • [68]Davies SJ, Shih CH, Noble M, Mayer-Proschel M, Davies JE, Proschel C: Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury. PLoS One 2011, 6:e17328.
  文献评价指标  
  下载次数:4次 浏览次数:9次