期刊论文详细信息
Cardiovascular Diabetology
Early impairment of coronary microvascular perfusion capacity in rats on a high fat diet
Marc van Bilsen5  Dennis Koehn2  Gustav J. Strijkers1  Hanneke Cobelens4  Chantal Munts4  Jos Slenter3  Jurgen W. G. E. van Teeffelen4  Mark J. Post4  Hans Vink4  M. Eline Kooi3  Judith van Haare4 
[1] Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, 1100 DE, The Netherlands;Pie Medical Imaging, Maastricht, 6201 BC, The Netherlands;Department of Radiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6200 MD, The Netherlands;Department of Physiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6200 MD, The Netherlands;Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6200 MD, The Netherlands
关键词: Glycocalyx;    Cardiac function;    Myocardial perfusion;    Endothelial dysfunction;    Obesity;   
Others  :  1234115
DOI  :  10.1186/s12933-015-0312-2
 received in 2015-07-24, accepted in 2015-11-06,  发布年份 2015
PDF
【 摘 要 】

Background

It remains to be established if, and to what extent, the coronary microcirculation becomes compromised during the development of obesity and insulin resistance. Recent studies suggest that changes in endothelial glycocalyx properties contribute to microvascular dysfunction under (pre-)diabetic conditions. Accordingly, early effects of diet-induced obesity on myocardial perfusion and function were studied in rats under baseline and hyperaemic conditions.

Methods

Rats were fed a high fat diet (HFD) for 6 weeks and myocardial microvascular perfusion was determined using first-pass perfusion MRI before and after adenosine infusion. The effect of HFD on microcirculatory properties was also assessed by sidestream darkfield (SDF) imaging of the gastrocnemius muscle.

Results

HFD-fed rats developed central obesity and insulin sensitivity was reduced as evidenced by the marked reduction in insulin-induced phosphorylation of Akt in both cardiac and gastrocnemius muscle. Early diet-induced obesity did not lead to hypertension or cardiac hypertrophic remodeling. In chow-fed, control rats a robust increase in cardiac microvascular perfusion was observed upon adenosine infusion (+40 %; p < 0.05). In contrast, the adenosine response was abrogated in rats on a HFD (+8 %; N.S.). HFD neither resulted in rarefaction or loss of glycocalyx integrity in skeletal muscle, nor reduced staining intensity of the glycocalyx of cardiac capillaries.

Conclusions

Alterations in coronary microcirculatory function as assessed by first-pass perfusion MRI represent one of the earliest obesity-related cardiac adaptations that can be assessed non-invasively. In this early stage of insulin resistance, disturbances in glycocalyx barrier properties appeared not to contribute to the observed changes in coronary microvascular function.

【 授权许可】

   
2015 van Haare et al.

【 预 览 】
附件列表
Files Size Format View
20151128030130841.pdf 3503KB PDF download
Fig.7. 52KB Image download
Fig.6. 17KB Image download
Fig.5. 52KB Image download
Fig.4. 21KB Image download
Fig.3. 38KB Image download
Fig.2. 15KB Image download
Fig.1. 59KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.7.

【 参考文献 】
  • [1]Caballero AE. Endothelial dysfunction in obesity and insulin resistance: a road to diabetes and heart disease. Obes Res. 2003.
  • [2]Schalkwijk CG, Stehouwer CD. Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin Sci. 2005.
  • [3]Han TS, Feskens EJ, Lean ME, Seidell JC. Associations of body composition with type 2 diabetes mellitus. Diabet Med. 1998.
  • [4]Reaven GM. Role of insulin resistance in human disease. Diabetes. 1988; 37(12):1595-1607.
  • [5]De Filippis E, Cusi K, Ocampo G, Berria R, Buck S, Consoli A et al.. Exercise-induced improvement in vasodilatory function accompanies increased insulin sensitivity in obesity and type 2 diabetes mellitus. J Clin Endocrinol Metab. 2006.
  • [6]de Jongh RT, Serne EH. RG IJ, de Vries G, Stehouwer CD. Impaired microvascular function in obesity: implications for obesity-associated microangiopathy, hypertension, and insulin resistance. Circulation. 2004.
  • [7]Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest. 1996.
  • [8]Gavin TP, Stallings HW, Zwetsloot KA, Westerkamp LM, Ryan NA, Moore RA et al.. Lower capillary density but no difference in VEGF expression in obese vs. lean young skeletal muscle in humans. J Appl Physiol. 2005.
  • [9]Houben AJ, Canoy MC, Paling HA, Derhaag PJ, de Leeuw PW. Quantitative analysis of retinal vascular changes in essential and renovascular hypertension. J Hypertens. 1995; 13(12 Pt 2):1729-1733.
  • [10]Serne EH, Gans RO, ter Maaten JC, ter Wee PM, Donker AJ, Stehouwer CD. Capillary recruitment is impaired in essential hypertension and relates to insulin’s metabolic and vascular actions. Cardiovasc Res. 2001; 49(1):161-168.
  • [11]Struijker Boudier HA, le Noble JL, Messing MW, Huijberts MS, le Noble FA, van Essen H. The microcirculation and hypertension. J Hypertens Suppl. 1992; 10(7):S147-S156.
  • [12]Tanner CJ, Barakat HA, Dohm GL, Pories WJ, MacDonald KG, Cunningham PR et al.. Muscle fiber type is associated with obesity and weight loss. Am J Physiol Endocrinol Metab. 2002.
  • [13]Eskens BJ, Leurgans TM, vink H, vanteeffelen JW. Early impairment of skeletal muscle endothelial glycocalyx barrier properties in diet-induced obesity in mice. Physiol Rep. 2014;2(1).
  • [14]Eskens BJ, Mooij HL, Cleutjens JP, Roos JM, Cobelens JE, Vink H et al.. Rapid insulin-mediated increase in microvascular glycocalyx accessibility in skeletal muscle may contribute to insulin-mediated glucose disposal in rats. PLoS One. 2013.
  • [15]Nieuwdorp M, Meuwese MC, Mooij HL, Ince C, Broekhuizen LN, Kastelein JJ et al.. Measuring endothelial glycocalyx dimensions in humans: a potential novel tool to monitor vascular vulnerability. J Appl Physiol. 2008.
  • [16]Nieuwdorp M, Meuwese MC, Vink H, Hoekstra JB, Kastelein JJ, Stroes ES. The endothelial glycocalyx: a potential barrier between health and vascular disease. Curr Opin Lipidol. 2005; 16(5):507-511.
  • [17]Van Teeffelen JW, Brands J, Stroes ES, Vink H. Endothelial glycocalyx: sweet shield of blood vessels. Trends Cardiovasc Med. 2007.
  • [18]Gouverneur M, Berg B, Nieuwdorp M, Stroes E, Vink H. Vasculoprotective properties of the endothelial glycocalyx: effects of fluid shear stress. J Intern Med. 2006.
  • [19]Di Carli MF, Charytan D, McMahon GT, Ganz P, Dorbala S, Schelbert HR. Coronary circulatory function in patients with the metabolic syndrome. J Nucl Med. 2011.
  • [20]Jebelovszki E, Kiraly C, Erdei N, Feher A, Pasztor ET, Rutkai I et al.. High-fat diet-induced obesity leads to increased NO sensitivity of rat coronary arterioles: role of soluble guanylate cyclase activation. Am J Physiol Heart Circ Physiol. 2008.
  • [21]Mourmoura E, Chate V, Couturier K, Laillet B, Vial G, Rigaudiere JP et al.. Body adiposity dictates different mechanisms of increased coronary reactivity related to improved in vivo cardiac function. Cardiovasc Diabetol. 2014.
  • [22]Naresh NK, Chen X, Roy RJ, Antkowiak PF, Annex BH, Epstein FH. Accelerated dual-contrast first-pass perfusion MRI of the mouse heart: development and application to diet-induced obese mice. Magn Reson Med. 2015.
  • [23]Prior JO, Quinones MJ, Hernandez-Pampaloni M, Facta AD, Schindler TH, Sayre JW et al.. Coronary circulatory dysfunction in insulin resistance, impaired glucose tolerance, and type 2 diabetes mellitus. Circulation. 2005.
  • [24]Schindler TH, Cardenas J, Prior JO, Facta AD, Kreissl MC, Zhang XL et al.. Relationship between increasing body weight, insulin resistance, inflammation, adipocytokine leptin, and coronary circulatory function. JACC. 2006.
  • [25]van den Brom CE, Bulte CS, Kloeze BM, Loer SA, Boer C, Bouwman RA. High fat diet-induced glucose intolerance impairs myocardial function, but not myocardial perfusion during hyperaemia: a pilot study. Cardiovasc Diabetol. 2012.
  • [26]Chappell D, Heindl B, Jacob M, Annecke T, Chen C, Rehm M et al.. Sevoflurane reduces leukocyte and platelet adhesion after ischemia-reperfusion by protecting the endothelial glycocalyx. Anesthesiology. 2011.
  • [27]Gollisch KS, Brandauer J, Jessen N, Toyoda T, Nayer A, Hirshman MF et al.. Effects of exercise training on subcutaneous and visceral adipose tissue in normal- and high-fat diet-fed rats. Am J Physiol Endocrinol Metab. 2009.
  • [28]Posey KA, Clegg DJ, Printz RL, Byun J, Morton GJ, Vivekanandan-Giri A et al.. Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am J Physiol Endocrinol Metab. 2009.
  • [29]Gebker R, Schwitter J, Fleck E, Nagel E. How we perform myocardial perfusion with cardiovascular magnetic resonance. JCMR. 2007.
  • [30]Nagel E, Klein C, Paetsch I, Hettwer S, Schnackenburg B, Wegscheider K et al.. Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation. 2003.
  • [31]van de Weijer T, van Ewijk PA, Zandbergen HR, Slenter JM, Kessels AG, Wildberger JE et al.. Geometrical models for cardiac MRI in rodents: comparison of quantification of left ventricular volumes and function by various geometrical models with a full-volume MRI data set in rodents. Am J Physiol Heart Circ Physiol. 2012.
  • [32]Coolen BF, Moonen RP, Paulis LE, Geelen T, Nicolay K, Strijkers GJ. Mouse myocardial first-pass perfusion MR imaging. Magn Reson Med. 2010.
  • [33]van Nierop BJ, Coolen BF, Dijk WJ, Hendriks AD, de Graaf L, Nicolay K et al.. Quantitative first-pass perfusion MRI of the mouse myocardium. Magn Reson Med. 2013.
  • [34]Goedhart PT, Khalilzada M, Bezemer R, Merza J, Ince C. Sidestream Dark Field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation. Opt Express. 2007; 15(23):15101-15114.
  • [35]Lee DH, Dane MJ, van den Berg BM, Boels MG, van Teeffelen JW, de Mutsert R et al.. Deeper penetration of erythrocytes into the endothelial glycocalyx is associated with impaired microvascular perfusion. PLoS One. 2014.
  • [36]Amraoui F, Olde Engberink RH, van Gorp J, Ramdani A, Vogt L, van den Born BJ. Microvascular glycocalyx dimension estimated by automated SDF imaging is not related to cardiovascular disease. Microcirculation. 2014.
  • [37]Daniels A, Linz D, van Bilsen M, Rutten H, Sadowski T, Ruf S et al.. Long-term severe diabetes only leads to mild cardiac diastolic dysfunction in Zucker diabetic fatty rats. Eur J Heart Fail. 2012.
  • [38]Vlahu CA, Lemkes BA, Struijk DG, Koopman MG, Krediet RT, Vink H. Damage of the endothelial glycocalyx in dialysis patients. JASN. 2012.
  • [39]Nagy N, Freudenberger T, Melchior-Becker A, Rock K, Ter Braak M, Jastrow H et al.. Inhibition of hyaluronan synthesis accelerates murine atherosclerosis: novel insights into the role of hyaluronan synthesis. Circulation. 2010.
  • [40]Burgmaier M, Sen S, Philip F, Wilson CR, Miller CC, Young ME et al.. Metabolic adaptation follows contractile dysfunction in the heart of obese Zucker rats fed a high-fat “Western” diet. Obesity. 2010.
  • [41]Sinitskaya N, Gourmelen S, Schuster-Klein C, Guardiola-Lemaitre B, Pevet P, Challet E. Increasing the fat-to-carbohydrate ratio in a high-fat diet prevents the development of obesity but not a prediabetic state in rats. Clin Sci. 2007.
  • [42]Wilson CR, Tran MK, Salazar KL, Young ME, Taegtmeyer H. Western diet, but not high fat diet, causes derangements of fatty acid metabolism and contractile dysfunction in the heart of Wistar rats. Biochem J. 2007.
  • [43]Rowland AF, Fazakerley DJ, James DE. Mapping insulin/GLUT4 circuitry. Traffic. 2011.
  • [44]Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw EB et al.. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science. 2001.
  • [45]Laviola L, Belsanti G, Davalli AM, Napoli R, Perrini S, Weir GC et al.. Effects of streptozocin diabetes and diabetes treatment by islet transplantation on in vivo insulin signaling in rat heart. Diabetes. 2001; 50(12):2709-2720.
  • [46]Ouwens DM, Diamant M, Fodor M, Habets DD, Pelsers MM, El Hasnaoui M et al.. Cardiac contractile dysfunction in insulin-resistant rats fed a high-fat diet is associated with elevated CD36-mediated fatty acid uptake and esterification. Diabetologia. 2007.
  • [47]Bulte CS, van den Brom CE, Loer SA, Boer C, Bouwman RA. Myocardial blood flow under general anaesthesia with sevoflurane in type 2 diabetic patients: a pilot study. Cardiovasc Diabetol. 2014.
  • [48]Li ZL, Woollard JR, Ebrahimi B, Crane JA, Jordan KL, Lerman A et al.. Transition from obesity to metabolic syndrome is associated with altered myocardial autophagy and apoptosis. Arterioscler Thromb Vasc Biol. 2012.
  • [49]Schelbert HR. Coronary circulatory function abnormalities in insulin resistance: insights from positron emission tomography. JACC. 2009.
  • [50]Eskens BJ, Zuurbier CJ, van Haare J, Vink H, van Teeffelen JW. Effects of 2 weeks of metformin treatment on whole-body glycocalyx barrier properties in db/db mice. Cardiovasc Diabetol. 2013.
  • [51]Mourmoura E, Vial G, Laillet B, Rigaudiere JP, Hininger-Favier I, Dubouchaud H et al.. Preserved endothelium-dependent dilatation of the coronary microvasculature at the early phase of diabetes mellitus despite the increased oxidative stress and depressed cardiac mechanical function ex vivo. Cardiovasc Diabetol. 2013.
  • [52]Vink H, Constantinescu AA, Spaan JA. Oxidized lipoproteins degrade the endothelial surface layer : implications for platelet-endothelial cell adhesion. Circulation. 2000; 101(13):1500-1502.
  • [53]Ariano MA, Armstrong RB, Edgerton VR. Hindlimb muscle fiber populations of five mammals. J Histochem Cytochem. 1973; 21(1):51-55.
  • [54]An D, Rodrigues B. Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol. 2006.
  • [55]Stanley WC, Lopaschuk GD, McCormack JG. Regulation of energy substrate metabolism in the diabetic heart. Cardiovasc Res. 1997; 34(1):25-33.
  • [56]van den Brom CE, Huisman MC, Vlasblom R, Boontje NM, Duijst S, Lubberink M et al.. Altered myocardial substrate metabolism is associated with myocardial dysfunction in early diabetic cardiomyopathy in rats: studies using positron emission tomography. Cardiovasc Diabetol. 2009.
  • [57]How OJ, Aasum E, Severson DL, Chan WY, Essop MF, Larsen TS. Increased myocardial oxygen consumption reduces cardiac efficiency in diabetic mice. Diabetes. 2006; 55(2):466-473.
  • [58]Pawar AS, Zhu XY, Eirin A, Tang H, Jordan KL, Woollard JR et al.. Adipose tissue remodeling in a novel domestic porcine model of diet-induced obesity. Obesity. 2015.
  文献评价指标  
  下载次数:8次 浏览次数:4次