Lipids in Health and Disease | |
Dietary fatty acid intake is associated with paraoxonase 1 activity in a cohort-based analysis of 1,548 subjects | |
Gail P Jarvik2  Clement E Furlong2  Jane E Ranchalis1  Amber A Burt1  Sean K Maden1  Daniel Seung Kim2  | |
[1] Department of Medicine, Division of Medical Genetics, University of Washington School of Medicine, Box 357720, Seattle, WA 98195-7720, USA;Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA | |
关键词: Cardiovascular disease; ω-3 fatty acids; Polyunsaturated fats; Monounsaturated fats; Saturated fats; Dietary fatty acid intake; Paraoxonase 1; | |
Others : 815344 DOI : 10.1186/1476-511X-12-183 |
|
received in 2013-09-23, accepted in 2013-12-07, 发布年份 2013 | |
【 摘 要 】
Background
Paraoxonase 1 (PON1) is a cardioprotective, HDL-associated glycoprotein enzyme with broad substrate specificity. Our previous work found associations between dietary cholesterol and vitamin C with PON1 activity. The goal of this study was to determine the effect of specific dietary fatty acid (DFA) intake on PON1 activity.
Methods
1,548 participants with paraoxonase activity measures completed the Harvard Standardized Food Frequency Questionnaire to determine their daily nutrient intake over the past year. Eight saturated, 3 monounsaturated, and 6 polyunsaturated DFAs were measured by the questionnaire. To reduce the number of observations tested, only specific fatty acids that were not highly correlated (r < 0.8) with other DFAs or that were representative of other DFAs through high correlation within each respective group (saturated, monounsaturated, or polyunsaturated) were retained for analysis. Six specific DFA intakes – myristic acid (14 carbon atoms, no double bonds – 14:0), oleic acid (18:1), gadoleic acid (20:1), α-linolenic acid (18:3), arachidonic acid (20:4), and eicosapentaenoic acid (20:5) – were carried forward to stepwise linear regression, which evaluated the effect of each specific DFA on covariate-adjusted PON1 enzyme activity.
Results
Four of the 6 tested DFA intakes – myristic acid (p = 0.038), gadoleic acid (p = 6.68 × 10-7), arachidonic acid (p = 0.0007), and eicosapentaenoic acid (p = 0.013) - were independently associated with covariate-adjusted PON1 enzyme activity. Myristic acid, a saturated fat, and gadoleic acid, a monounsaturated fat, were both positively associated with PON1 activity. Both of the tested polyunsaturated fats, arachidonic acid and eicosapentaenoic acid, were negatively associated with PON1 activity.
Conclusions
This study presents the largest cohort-based analysis of the relationship between dietary lipids and PON1 enzyme activity. Further research is necessary to elucidate and understand the specific biological mechanisms, whether direct or regulatory, through which DFAs affect PON1 activity.
【 授权许可】
2013 Kim et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140710065914137.pdf | 733KB | download | |
Figure 2. | 65KB | Image | download |
Figure 1. | 67KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
【 参考文献 】
- [1]Boden WE, Probstfield JL, Anderson T, Chaitman BR, Desvignes-Nickens P, Koprowicz K, McBride R, Teo K, Weintraub W, AIM-HIGH Investigators: Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med 2011, 365:2255-2267.
- [2]Voight BF, Peloso GM, Orho-Melander M, Frikke-Schmidt R, Barbalic M, Jensen MK, Hindy G, Hólm H, Ding EL, Johnson T: Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet 2012, 380:572-580.
- [3]Draganov DI, Teiber JF, Speelman A, Osawa Y, Sunahara R, La Du BN: Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities. J Lipid Res 2005, 46:1239-1247.
- [4]Mackness MI, Arrol S, Abbott C, Durrington PN: Protection of low-density lipoprotein against oxidative modification by high-density lipoprotein associated paraoxonase. Atherosclerosis 1993, 104:129-135.
- [5]Costa LG, McDonald BE, Murphy SD, Omenn GS, Richter RJ, Motulsky AG, Furlong CE: Serum paraoxonase and its influence on paraoxon and chlorpyrifos-oxon toxicity in rats. Toxicol Appl Pharmacol 1990, 103:66-76.
- [6]Richter RJ, Jarvik GP, Furlong CE: Determination of paraoxonase 1 status without the use of toxic organophosphate substrates. Circ Cardiovasc Genet 2008, 1:147-152.
- [7]Richter RJ, Jarvik GP, Furlong CE: Paraoxonase 1 (PON1) status and substrate hydrolysis. Toxicol Appl Pharmacol 2009, 235:1-9.
- [8]Brophy VH, Hastings MD, Clendenning JB, Richter RJ, Jarvik GP, Furlong CE: Polymorphisms in the human paraoxonase (PON1) promoter. Pharmacogenetics 2001, 11:77-84.
- [9]Brophy VH, Jampsa RL, Clendenning JB, McKinstry LA, Jarvik GP, Furlong CE: Effects of 5′ regulatory-region polymorphisms on paraoxonase-gene (PON1) expression. Am J Hum Genet 2001, 68:1428.
- [10]Suehiro T, Nakamura T, Inoue M, Shiinoki T, Ikeda Y, Kumon Y, Shindo M, Tanaka H, Hashimoto K: A polymorphism upstream from the human paraoxonase (PON1) gene and its association with PON1 expression. Atherosclerosis 2000, 150:295-298.
- [11]Leviev I, James RW: Promoter polymorphisms of human paraoxonase PON1 gene and serum paraoxonase activities and concentrations. Arterioscler Thromb Vasc Biol 2000, 20:516-521.
- [12]Kim DS, Burt AA, Ranchalis JE, Richter RJ, Marshall JK, Eintracht JF, Rosenthal EA, Furlong CE, Jarvik GP: Additional common polymorphisms in the PON gene cluster predict PON1 activity but Not vascular disease. J Lipids 2012, 2012:476316.
- [13]Hassett C, Richter RJ, Humbert R, Chapline C, Crabb JW, Omiecinski CJ, Furlong CE: Characterization of cDNA clones encoding rabbit and human serum paraoxonase: the mature protein retains its signal sequence. Biochemistry 1991, 30:10141-10149.
- [14]Jarvik GP, Jampsa R, Richter RJ, Carlson CS, Rieder MJ, Nickerson DA, Furlong CE: Novel paraoxonase (PON1) nonsense and missense mutations predicted by functional genomic assay of PON1 status. Pharmacogenetics 2003, 13:291-295.
- [15]Kim DS, Burt AA, Crosslin DR, Robertson PD, Ranchalis JE, Boyko EJ, Nickerson DA, Furlong CE, Jarvik GP: Novel common and rare genetic determinants of paraoxonase activity: FTO, SERPINA12, and ITGAL. J Lipid Res 2013, 54:552-560.
- [16]Costa LG, Giordano G, Furlong CE: Pharmacological and dietary modulators of paraoxonase 1 (PON1) activity and expression: the hunt goes on. Biochem Pharmacol 2011, 81:337-344.
- [17]Kim DS, Marsillach J, Furlong CE, Jarvik GP: Pharmacogenetics of paraoxonase activity: elucidating the role of high-density lipoprotein in disease. Pharmacogenomics 2013, 14:1495-1515.
- [18]Kim DS, Burt AA, Ranchalis JE, Richter RJ, Marshall JK, Nakayama KS, Jarvik ER, Eintracht JF, Rosenthal EA, Furlong CE, Jarvik GP: Dietary cholesterol increases paraoxonase 1 enzyme activity. J Lipid Res 2012, 53:2450-2458.
- [19]Kudchodkar BJ, Lacko AG, Dory L, Fungwe TV: Dietary fat modulates serum paraoxonase 1 activity in rats. J Nutr 2000, 130:2427-2433.
- [20]Wallace AJ, Sutherland WH, Mann JI, Williams SM: The effect of meals rich in thermally stressed olive and safflower oils on postprandial serum paraoxonase activity in patients with diabetes. Eur J Clin Nutr 2001, 55:951-958.
- [21]Tomás M, Sentí M, Elosua R, Vila J, Sala J, Masià R, Marrugat J: Interaction between the Gln–Arg 192 variants of the paraoxonase gene and oleic acid intake as a determinant of high-density lipoprotein cholesterol and paraoxonase activity. Eur J Pharmacol 2001, 432:121-128.
- [22]de Roos NM, Schouten EG, Scheek LM, van Tol A, Katan MB: Replacement of dietary saturated fat with trans fat reduces serum paraoxonase activity in healthy men and women. Metab Clin Exp 2002, 51:1534-1537.
- [23]NGUYEN SD, Sok D-E: Preferential inhibition of paraoxonase activity of human paraoxonase 1 by negatively charged lipids. J Lipid Res 2004, 45:2211-2220.
- [24]NGUYEN SD, Sok D-E: Beneficial effect of oleoylated lipids on paraoxonase 1: protection against oxidative inactivation and stabilization. Biochem J 2003, 375:275-285.
- [25]NGUYEN SD, Hung ND, Cheon-Ho P, Ree KM, Dai-Eun S: Oxidative inactivation of lactonase activity of purified human paraoxonase 1 (PON1). Biochim Biophys Acta 2009, 1790:155-160.
- [26]Jarvik GP, Tsai NT, McKinstry LA, Wani R, Brophy VH, Richter RJ, Schellenberg GD, Heagerty PJ, Hatsukami TS, Furlong CE: Vitamin C and E intake is associated with increased paraoxonase activity. Arterioscler Thromb Vasc Biol 2002, 22:1329-1333.
- [27]Jarvik GP, Rozek LS, Brophy VH, Hatsukami TS, Richter RJ, Schellenberg GD, Furlong CE: Paraoxonase (PON1) phenotype is a better predictor of vascular disease than is PON1192 or PON155 genotype. Arterioscler Thromb Vasc Biol 2000, 20:2441-2447.
- [28]Jarvik GP, Hatsukami TS, Carlson C, Richter RJ, Jampsa R, Brophy VH, Margolin S, Rieder M, Nickerson D, Schellenberg GD: Paraoxonase activity, but not haplotype utilizing the linkage disequilibrium structure, predicts vascular disease. Arterioscler Thromb Vasc Biol 2003, 23:1465-1471.
- [29]Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC: Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am J Epidemiol 1992, 135:1114-1126. discussion 1127–36
- [30]Hunter DJ, Rimm EB, Sacks FM, Stampfer MJ, Colditz GA, Litin LB, Willett WC: Comparison of measures of fatty acid intake by subcutaneous fat aspirate, food frequency questionnaire, and diet records in a free-living population of US men. Am J Epidemiol 1992, 135:418-427.
- [31]Willett W, Stampfer M, Chu NF, Spiegelman D, Holmes M, Rimm E: Assessment of questionnaire validity for measuring total fat intake using plasma lipid levels as criteria. Am J Epidemiol 2001, 154:1107-1112.
- [32]Dixon WJ, Tukey JW: Approximate behavior of the distribution of Winsorized t (Trimming/Winsorization 2). Technometrics 1968, 10:83-98.
- [33]Mackness MI, Arrol S, Durrington PN: Paraoxonase prevents accumulation of lipoperoxides in low-density lipoprotein. FEBS Lett 1991, 286:152-154.
- [34]Marsillach J, Mackness B, Mackness M, Riu F, Beltrán R, Joven J, Camps J: Immunohistochemical analysis of paraoxonases-1, 2, and 3 expression in normal mouse tissues. Free Radic Biol Med 2008, 45:146-157.
- [35]Deakin SP, Bioletto S, Bochaton-Piallat M-L, James RW: HDL-associated paraoxonase-1 can redistribute to cell membranes and influence sensitivity to oxidative stress. Free Radic Biol Med 2011, 50:102-109.
- [36]Ozer EA, Pezzulo A, Shih DM, Chun C, Furlong C, Lusis AJ, Greenberg EP, Zabner J: Human and murine paraoxonase 1 are host modulators of Pseudomonas aeruginosa quorum-sensing. FEMS Microbiol Lett 2005, 253:29-37.
- [37]Stoltz DA, Ozer EA, Ng CJ, Yu JM, Reddy ST, Lusis AJ, Bourquard N, Parsek MR, Zabner J, Shih DM: Paraoxonase-2 deficiency enhances Pseudomonas aeruginosa quorum sensing in murine tracheal epithelia. Am J Physiol Lung Cell Mol Physiol 2007, 292:L852-L860.
- [38]Draganov DI, La Du BN: Pharmacogenetics of paraoxonases: a brief review. Naunyn Schmiedebergs Arch Pharmacol 2004, 369:78-88.
- [39]Stevens RC, Khateeb J, Rock W, Draganov DI, Qureshi MM, Noll C, Sierksma A, Suzuki SM, Gantman A, Rosenblat M, MD RGO, Noll C, van der Gaag MS, Cole TB, Kreitenberg AJ, Miller-Lotan R, McClure WC, Messaoudi S, van Tol A, Park SS, Aviram M, Levy AP, C-PNP JVSM, Messaoudi S, James RW, Richter RJ, Fuhrman B, Elias M, Arevalo NL, Milliez P, et al.: Engineered recombinant human paraoxonase 1 (rHuPON1) purified from Escherichia coli protects against organophosphate poisoning. Proc Natl Acad Sci 2008, 105:12780-12784.
- [40]Davies HG, Richter RJ, Keifer M, Broomfield CA, Sowalla J, Furlong CE: The effect of the human serum paraoxonase polymorphism is reversed with diazoxon, soman and sarin. Nat Genet 1996, 14:334-336.
- [41]Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, Pirruccello JP, Ripatti S, Chasman DI, Willer CJ, Johansen CT, Fouchier SW, Isaacs A, Peloso GM, Barbalic M, Ricketts SL, Bis JC, Aulchenko YS, Thorleifsson G, Feitosa MF, Chambers J, Orho-Melander M, Melander O, Johnson T, Li X, Guo X, Li M, Shin Cho Y, Jin Go M, Jin Kim Y, et al.: Biological, clinical and population relevance of 95 loci for blood lipids. Nature 2010, 466:707-713.
- [42]Kris-Etherton PM: Fish consumption, fish Oil, omega-3 fatty acids, and cardiovascular disease. Circulation 2002, 106:2747-2757.
- [43]Kim DS, Burt AA, Ranchalis JE, Jarvik ER, Rosenthal EA, Hatsukami TS, Furlong CE, Jarvik GP: Novel gene-by-environment interactions: APOB and NPC1L1 variants affect the relationship between dietary and total plasma cholesterol. J Lipid Res 2013, 54:1512-1520.