期刊论文详细信息
Epigenetics & Chromatin
Targeted Chromatin Capture (T2C): a novel high resolution high throughput method to detect genomic interactions and regulatory elements
Tobias A Knoch2  Frank Grosveld2  Wilfred FJ van IJcken1  Kerstin S Wendt2  Christel EM Kockx1  Rutger WW Brouwer1  Jessica Zuin2  Nick Kepper3  Harmen JG van de Werken2  Petros Kolovos2 
[1] Center for Biomics, Erasmus MC, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands;Department of Cell Biology, Erasmus MC, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands;Deutsches Krebsforschungszentrum (DKFZ) & BioQuant, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
关键词: Promoters;    Enhancers;    Long range interactions;    Chromatin conformation capture;   
Others  :  1120653
DOI  :  10.1186/1756-8935-7-10
 received in 2014-04-28, accepted in 2014-05-28,  发布年份 2014
PDF
【 摘 要 】

Background

Significant efforts have recently been put into the investigation of the spatial organization and the chromatin-interaction networks of genomes. Chromosome conformation capture (3C) technology and its derivatives are important tools used in this effort. However, many of these have limitations, such as being limited to one viewpoint, expensive with moderate to low resolution, and/or requiring a large sequencing effort. Techniques like Hi-C provide a genome-wide analysis. However, it requires massive sequencing effort with considerable costs. Here we describe a new technique termed Targeted Chromatin Capture (T2C), to interrogate large selected regions of the genome. T2C provides an unbiased view of the spatial organization of selected loci at superior resolution (single restriction fragment resolution, from 2 to 6 kbp) at much lower costs than Hi-C due to the lower sequencing effort.

Results

We applied T2C on well-known model regions, the mouse β-globin locus and the human H19/IGF2 locus. In both cases we identified all known chromatin interactions. Furthermore, we compared the human H19/IGF2 locus data obtained from different chromatin conformation capturing methods with T2C data. We observed the same compartmentalization of the locus, but at a much higher resolution (single restriction fragments vs. the common 40 kbp bins) and higher coverage. Moreover, we compared the β-globin locus in two different biological samples (mouse primary erythroid cells and mouse fetal brain), where it is either actively transcribed or not, to identify possible transcriptional dependent interactions. We identified the known interactions in the β-globin locus and the same topological domains in both mouse primary erythroid cells and in mouse fetal brain with the latter having fewer interactions probably due to the inactivity of the locus. Furthermore, we show that interactions due to the important chromatin proteins, Ldb1 and Ctcf, in both tissues can be analyzed easily to reveal their role on transcriptional interactions and genome folding.

Conclusions

T2C is an efficient, easy, and affordable with high (restriction fragment) resolution tool to address both genome compartmentalization and chromatin-interaction networks for specific genomic regions at high resolution for both clinical and non-clinical research.

【 授权许可】

   
2014 Kolovos et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150210045515874.pdf 2362KB PDF download
Figure 7. 43KB Image download
Figure 6. 63KB Image download
Figure 5. 118KB Image download
Figure 4. 145KB Image download
Figure 3. 98KB Image download
Figure 2. 150KB Image download
Figure 1. 83KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B: Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 2012, 485:376-380.
  • [2]Cremer T, Cremer C: Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2001, 2:292-301.
  • [3]Dillon N, Trimborn T, Strouboulis J, Fraser P, Grosveld F: The effect of distance on long-range chromatin interactions. Mol Cell 1997, 1:131-139.
  • [4]Mueller-Storm HP, Sogo JM, Schaffner W: An enhancer stimulates transcription in trans when attached to the promoter via a protein bridge. Cell 1989, 58:767-777.
  • [5]Jhunjhunwala S, van Zelm MC, Peak MM, Cutchin S, Riblet R, van Dongen JJ, Grosveld FG, Knoch TA, Murre C: The 3D structure of the immunoglobulin heavy-chain locus: implications for long-range genomic interactions. Cell 2008, 133:265-279.
  • [6]Medvedovic J, Ebert A, Tagoh H, Tamir IM, Schwickert TA, Novatchkova M, Sun Q, Veld PJHI’t, Guo C, Yoon HS, Denizot Y, Holwerda SJ, de Laat W, Cogne M, Alt FW, Busslinger M: Flexible long-range loops in the VH gene region of the Igh locus facilitate the generation of a diverse antibody repertoire. Immunity 2013, 39:229-244.
  • [7]Bulger M, Groudine M: Functional and mechanistic diversity of distal transcription enhancers. Cell 2011, 144:327-339.
  • [8]Maeda RK, Karch F: Gene expression in time and space: additive vs hierarchical organization of cis-regulatory regions. Curr Opin Genet Dev 2011, 21:187-193.
  • [9]Kolovos P, Knoch TA, Grosveld FG, Cook PR, Papantonis A: Enhancers and silencers: an integrated and simple model for their function. Epigenetics Chromatin 2012, 5:1. BioMed Central Full Text
  • [10]Maas SA, Fallon JF: Single base pair change in the long-range Sonic hedgehog limb-specific enhancer is a genetic basis for preaxial polydactyly. Dev Dyn 2005, 232:345-348.
  • [11]Lin YC, Murre C: Nuclear location and the control of developmental progression. Curr Opin Genet Dev 2013, 23:104-108.
  • [12]Splinter E, de Wit E, Nora EP, Klous P, van de Werken HJ, Zhu Y, Kaaij LJ, van Ijcken W, Gribnau J, Heard E, de Laat W: The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Dev 2011, 25:1371-1383.
  • [13]Splinter E, Heath H, Kooren J, Palstra RJ, Klous P, Grosveld F, Galjart N, de Laat W: CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. Genes Dev 2006, 20:2349-2354.
  • [14]Zuin J, Dixon JR, van der Reijden MI, Ye Z, Kolovos P, Brouwer RW, van de Corput MP, van de Werken HJ, Knoch TA, van Ijcken WF, Grosveld FG, Ren B, Wendt KS: Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proc Natl Acad Sci U S A 2014, 111:996-1001.
  • [15]Deng W, Lee J, Wang H, Miller J, Reik A, Gregory PD, Dean A, Blobel GA: Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 2012, 149:1233-1244.
  • [16]Drissen R, Palstra RJ, Gillemans N, Splinter E, Grosveld F, Philipsen S, de Laat W: The active spatial organization of the beta-globin locus requires the transcription factor EKLF. Genes Dev 2004, 18:2485-2490.
  • [17]Hou C, Dale R, Dean A: Cell type specificity of chromatin organization mediated by CTCF and cohesin. Proc Natl Acad Sci U S A 2010, 107:3651-3656.
  • [18]Lin YC, Benner C, Mansson R, Heinz S, Miyazaki K, Miyazaki M, Chandra V, Bossen C, Glass CK, Murre C: Global changes in the nuclear positioning of genes and intra- and interdomain genomic interactions that orchestrate B cell fate. Nat Immunol 2012, 13:1196-1204.
  • [19]Dekker J, Rippe K, Dekker M, Kleckner N: Capturing chromosome conformation. Science 2002, 295:1306-1311.
  • [20]Tolhuis B, Palstra RJ, Splinter E, Grosveld F, de Laat W: Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol Cell 2002, 10:1453-1465.
  • [21]Hagege H, Klous P, Braem C, Splinter E, Dekker J, Cathala G, de Laat W, Forne T: Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat Protoc 2007, 2:1722-1733.
  • [22]Naumova N, Smith EM, Zhan Y, Dekker J: Analysis of long-range chromatin interactions using Chromosome Conformation Capture. Methods 2012, 58:192-203.
  • [23]Stadhouders R, Kolovos P, Brouwer R, Zuin J, van den Heuvel A, Kockx C, Palstra RJ, Wendt KS, Grosveld F, van Ijcken W, Soler E: Multiplexed chromosome conformation capture sequencing for rapid genome-scale high-resolution detection of long-range chromatin interactions. Nat Protoc 2013, 8:509-524.
  • [24]van de Werken HJ, Landan G, Holwerda SJ, Hoichman M, Klous P, Chachik R, Splinter E, Valdes-Quezada C, Oz Y, Bouwman BA, Verstegen MJ, de Wit E, Tanay A, de Laat W: Robust 4C-seq data analysis to screen for regulatory DNA interactions. Nat Methods 2012, 9:969-972.
  • [25]Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van Steensel B, de Laat W: Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 2006, 38:1348-1354.
  • [26]Sexton T, Kurukuti S, Mitchell JA, Umlauf D, Nagano T, Fraser P: Sensitive detection of chromatin coassociations using enhanced chromosome conformation capture on chip. Nat Protoc 2012, 7:1335-1350.
  • [27]Gondor A, Rougier C, Ohlsson R: High-resolution circular chromosome conformation capture assay. Nat Protoc 2008, 3:303-313.
  • [28]Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H, Mohamed YB, Orlov YL, Velkov S, Ho A, Mei PH, Chew EG, Huang PY, Welboren WJ, Han Y, Ooi HS, Ariyaratne PN, Vega VB, Luo Y, Tan PY, Choy PY, Wansa KD, Zhao B, Lim KS, Leow SC, Yow JS, Joseph R, Li H, Desai KV, Thomsen JS, Lee YK: An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 2009, 462:58-64.
  • [29]Dostie J, Dekker J: Mapping networks of physical interactions between genomic elements using 5C technology. Nat Protoc 2007, 2:988-1002.
  • [30]Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannapoulos J, Mirny LA, Lander ES, Dekker J: Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 2009, 326:289-293.
  • [31]Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, Honan TA, Rubio ED, Krumm A, Lamb J, Nusbaum C, Green RD, Dekker J: Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res 2006, 16:1299-1309.
  • [32]Jin F, Li Y, Dixon JR, Selvaraj S, Ye Z, Lee AY, Yen CA, Schmitt AD, Espinoza CA, Ren B: A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 2013, 503:290-294.
  • [33]Nativio R, Wendt KS, Ito Y, Huddleston JE, Uribe-Lewis S, Woodfine K, Krueger C, Reik W, Peters JM, Murrell A: Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus. PLoS Genet 2009, 5:e1000739.
  • [34]van de Corput MP, de Boer E, Knoch TA, van Cappellen WA, Quintanilla A, Ferrand L, Grosveld FG: Super-resolution imaging reveals three-dimensional folding dynamics of the beta-globin locus upon gene activation. J Cell Sci 2012, 125:4630-4639.
  • [35]Palstra RJ, Tolhuis B, Splinter E, Nijmeijer R, Grosveld F, de Laat W: The beta-globin nuclear compartment in development and erythroid differentiation. Nat Genet 2003, 35:190-194.
  • [36]Song SH, Hou C, Dean A: A positive role for NLI/Ldb1 in long-range beta-globin locus control region function. Mol Cell 2007, 28:810-822.
  • [37]Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M, ENCODE Project Consortium: An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489:57-74.
  • [38]Soler E, Andrieu-Soler C, de Boer E, Bryne JC, Thongjuea S, Stadhouders R, Palstra RJ, Stevens M, Kockx C, van Ijcken W, Hou J, Steinhoff C, Rijkers E, Lenhard B, Grosveld F: The genome-wide dynamics of the binding of Ldb1 complexes during erythroid differentiation. Genes Dev 2010, 24:277-289.
  • [39]Fraser P, Bickmore W: Nuclear organization of the genome and the potential for gene regulation. Nature 2007, 447:413-417.
  • [40]Misteli T: Beyond the sequence: cellular organization of genome function. Cell 2007, 128:787-800.
  • [41]Simonis M, Klous P, Homminga I, Galjaard RJ, Rijkers EJ, Grosveld F, Meijerink JP, de Laat W: High-resolution identification of balanced and complex chromosomal rearrangements by 4C technology. Nat Methods 2009, 6:837-842.
  • [42]Stadhouders R, van den Heuvel A, Kolovos P, Jorna R, Leslie K, Grosveld F, Soler E: Transcription regulation by distal enhancers: who’s in the loop? Transcription 2012, 3:181-186.
  • [43]Li L, Lee JY, Gross J, Song SH, Dean A, Love PE: A requirement for Lim domain binding protein 1 in erythropoiesis. J Exp Med 2010, 207:2543-2550.
  • [44]Li L, Jothi R, Cui K, Lee JY, Cohen T, Gorivodsky M, Tzchori I, Zhao Y, Hayes SM, Bresnick EH, Zhao K, Westphal H, Love PE: Nuclear adaptor Ldb1 regulates a transcriptional program essential for the maintenance of hematopoietic stem cells. Nat Immunol 2011, 12:129-136.
  • [45]Mylona A, Andrieu-Soler C, Thongjuea S, Martella A, Soler E, Jorna R, Hou J, Kockx C, van Ijcken W, Lenhard B, Grosveld F: Genome-wide analysis shows that Ldb1 controls essential hematopoietic genes/pathways in mouse early development and reveals novel players in hematopoiesis. Blood 2013, 121:2902-2913.
  • [46]Mukhopadhyay M, Teufel A, Yamashita T, Agulnick AD, Chen L, Downs KM, Schindler A, Grinberg A, Huang SP, Dorward D, Westphal H: Functional ablation of the mouse Ldb1 gene results in severe patterning defects during gastrulation. Development 2003, 130:495-505.
  • [47]Bolger AM, Lohse M, Usadel B: Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014. [Epub ahead of print]
  • [48]Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25:1754-1760.
  • [49]Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26:841-842.
  • [50]Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, Laue ED, Tanay A, Fraser P: Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 2013, 502:59-64.
  • [51]van de Werken HJ, de Vree PJ, Splinter E, Holwerda SJ, Klous P, de Wit E, de Laat W: 4C technology: protocols and data analysis. Methods Enzymol 2012, 513:89-112.
  • [52]R-Core-Team: R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2013. [http://www.r-project.org/ webcite]
  • [53]Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS: Model-based analysis of ChIP-Seq (MACS). Genome Biol 2008, 9:R137. BioMed Central Full Text
  文献评价指标  
  下载次数:44次 浏览次数:23次