期刊论文详细信息
Journal of Clinical Bioinformatics
A distinct metabolic signature predicts development of fasting plasma glucose
Joachim Spranger5  Joachim Selbig2  Lothar Willmitzer4  Andreas FH Pfeiffer3  Gareth S Catchpole2  Anke Assmann6  Thomas Bobbert6  Antje Fischer-Rosinský6  Franziska Schwarz6  Abdelhalim Larhlimi1  Manuela Hische1 
[1] Department of Bioinformatics, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany;Max-Planck-Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany;Department of Clinical Nutrition, German Institute of Human Nutrition, Arthur-Scheunert-Allee 144-116, 14558 Nuthetal, Germany;King Abdulaziz University, P.O. Box 80203 Jeddah 21589, KSA;Center for Cardiovascular Research (CCR), Charité-University Medicine Berlin, Berlin, Germany;Clinic of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
关键词: biomarker;    regression;    metabolite;    random forest;    plasma;    metabolomics;    type 2 diabetes;    fasting glucose;    prediction;   
Others  :  806092
DOI  :  10.1186/2043-9113-2-3
 received in 2011-09-21, accepted in 2012-02-02,  发布年份 2012
PDF
【 摘 要 】

Background

High blood glucose and diabetes are amongst the conditions causing the greatest losses in years of healthy life worldwide. Therefore, numerous studies aim to identify reliable risk markers for development of impaired glucose metabolism and type 2 diabetes. However, the molecular basis of impaired glucose metabolism is so far insufficiently understood. The development of so called 'omics' approaches in the recent years promises to identify molecular markers and to further understand the molecular basis of impaired glucose metabolism and type 2 diabetes. Although univariate statistical approaches are often applied, we demonstrate here that the application of multivariate statistical approaches is highly recommended to fully capture the complexity of data gained using high-throughput methods.

Methods

We took blood plasma samples from 172 subjects who participated in the prospective Metabolic Syndrome Berlin Potsdam follow-up study (MESY-BEPO Follow-up). We analysed these samples using Gas Chromatography coupled with Mass Spectrometry (GC-MS), and measured 286 metabolites. Furthermore, fasting glucose levels were measured using standard methods at baseline, and after an average of six years. We did correlation analysis and built linear regression models as well as Random Forest regression models to identify metabolites that predict the development of fasting glucose in our cohort.

Results

We found a metabolic pattern consisting of nine metabolites that predicted fasting glucose development with an accuracy of 0.47 in tenfold cross-validation using Random Forest regression. We also showed that adding established risk markers did not improve the model accuracy. However, external validation is eventually desirable. Although not all metabolites belonging to the final pattern are identified yet, the pattern directs attention to amino acid metabolism, energy metabolism and redox homeostasis.

Conclusions

We demonstrate that metabolites identified using a high-throughput method (GC-MS) perform well in predicting the development of fasting plasma glucose over several years. Notably, not single, but a complex pattern of metabolites propels the prediction and therefore reflects the complexity of the underlying molecular mechanisms. This result could only be captured by application of multivariate statistical approaches. Therefore, we highly recommend the usage of statistical methods that seize the complexity of the information given by high-throughput methods.

【 授权许可】

   
2012 Hische et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708090235966.pdf 573KB PDF download
Figure 2. 20KB Image download
Figure 1. 109KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJL (Eds): [http://files.dcp2.org/pdf/GBD/GBD.pdf] webciteIn Global Burden of Disease and Risk Factors. A copublication of The World Bank and Oxford University Press; 2006.
  • [2]von Eckardstein A, Schulte H, Assmann G: Risk for diabetes mellitus in middle-aged Caucasian male participants of the PROCAM study: implications for the definition of impaired fasting glucose by the American Diabetes Association. J Clin Endocrinol Metab 2000, 85(9):3101-8.
  • [3]Lindström J, Tuomilehto J: The diabetes risk score: a practical tool to predict type 2 diabetes risk. Diabetes Care 2003, 26(3):723-731.
  • [4]Lin X, Song K, Lim N, Yuan X, Johnson T, Abderrahmani A, Vollenweider P, Stirnadel H, Sundseth S, Lai E, Burns D, Middleton L, Roses A, Matthews P, Waeber G, Cardon L, Waterworth D, Mooser V: Risk prediction of prevalent diabetes in a Swiss population using a weighted genetic score - the CoLaus Study. Diabetologia 2009, 52(4):600-608.
  • [5]Hische M, Luis-Dominguez O, Pfeiffer AF, Schwarz PE, Selbig J, Spranger J: Decision Trees as a simple-to-use and reliable tool to identify individuals with impaired glucose metabolism or type 2 diabetes mellitus. Eur J Endocrinol 2010, 163(4):565-571.
  • [6]Denkert C, Budczies J, Kind T, Weichert W, Tablack P, Sehouli J, Niesporek S, Könsgen D, Dietel M, Fiehn O: Mass Spectrometry-Based Metabolic Profiling Reveals Different Metabolite Patterns in Invasive Ovarian Carcinomas and Ovarian Borderline Tumors. [http://cancerres.aacrjournals.org/content/66/22/10795.abstract] webciteCancer Res 2006, 66(22):10795-10804.
  • [7]Denkert C, Budczies J, Weichert W, Wohlgemuth G, Scholz M, Kind T, Niesporek S, Noske A, Buckendahl A, Dietel M, Fiehn O: Metabolite profiling of human colon carcinoma - deregulation of TCA cycle and amino acid turnover. [http://www.molecular-cancer.com/content/7/1/72] webciteMol Cancer 2008, 7:72. BioMed Central Full Text
  • [8]Mukaetova-Ladinska EB, Monteith R, Perry EK: Cerebrospinal Fluid Biomarkers for Dementia with Lewy Bodies. Int J Alzheimers Dis 2010, 2010:17.
  • [9]Hilvo M, Denkert C, Lehtinen L, Muller B, Brockmoller S, Seppanen-Laakso T, Budczies J, Bucher E, Yetukuri L, Castillo S, Berg E, Nygren H, Sysi-Aho M, Griffin JL, Fiehn O, Loibl S, Richter-Ehrenstein C, Radke C, Hyotylainen T, Kallioniemi O, Iljin K, Oresic M: Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression. [http:/ / cancerres.aacrjournals.org/ content/ early/ 2011/ 03/ 16/ 0008-5472.CAN-10-3894.abstract] webciteCancer Res 2011.
  • [10]Catchpole G, Platzer A, Weikert C, Kempkensteffen C, Johannsen M, Krause H, Jung K, Miller K, Willmitzer L, Selbig J, Weikert S: Metabolic profiling reveals key metabolic features of renal cell carcinoma. [http://dx.doi.org/10.1111/j.1582-4934.2009.00939.x] webciteJ Cell Mol Med 2011, 15:109-118.
  • [11]Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, Lewis GD, Fox CS, Jacques PF, Fernandez C, O'Donnell CJ, Carr SA, Mootha VK, Florez JC, Souza A, Melander O, Clish CB, Gerszten RE: Metabolite profiles and the risk of developing diabetes. [http://www.nature.com/nm/journal/vaop/ncurrent/full/nm.2307.html] webciteNat Med 2011.
  • [12]Fischer A, Fisher E, Möhlig M, Schulze M, Hoffmann K, Weickert MO, Schueler R, Osterhoff M, Pfeiffer AF, Boeing H, Spranger J: KCNJ11 E23K Affects Diabetes Risk and Is Associated With the Disposition Index. [http://care.diabetesjournals.org/content/31/1/87.short] webciteDiabetes Care 2008, 31:87-89.
  • [13]Hummel J, Selbig J, Walther D, Kopka J: The Golm Metabolome Database: a database for GC-MS based metabolite profiling. [http://dx.doi.org/10.1007/4735_2007_0229] webciteIn Metabolomics, Volume 18 of Topics in Current Genetics Edited by Nielsen J, Jewett M. Springer Berlin/Heidelberg; 2007, 75-95.
  • [14]Cuadros-Inostroza A, Caldana C, Redestig H, Kusano M, Lisec J, Peña Cortés H, Willmitzer L, Hannah M: TargetSearch - a Bioconductor package for the efficient preprocessing of GC-MS metabolite profiling data. [http://dx.doi.org/10.1186/1471-2105-10-428] webciteBMC Bioinformatics 2009, 10:1-12. BioMed Central Full Text
  • [15]Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR: Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 2006, 1:387-396.
  • [16]Breiman L: Random Forests. [http://dx.doi.org/10.1023/A:1010933404324] webciteMach Learn 2001, 45:5-32.
  • [17]Liaw A, Wiener M: Classification and Regression by randomForest. [http://CRAN.R-project.org/doc/Rnews/Rnews_2002-3.pdf] webciteR News 2002, 2(3):18-22.
  • [18]Svetnik V, Liaw A, Tong C, Wang T: Application of Breiman's random forest to modeling structure-activity relationships of pharmaceutical molecules. In Multiple classifier systems, proceedings, Volume 3077 of Lecture notes in computer science. Edited by Roli, Fabio, Kittler, Josef, Windeatt. Terry; 2004:334-343. 5th International Workshop on Multiple Classifier Systems, Cagliari, ITALY, JUN 09-SEP 11, 2004
  • [19]Hastie T, Tibshirani R, Friedman J: The Elements of Statistical Learning. Springer; 2009.
  • [20]Meloun M, Militky J, Hill M, Brereton RG: Crucial problems in regression modelling and their solutions. [http://dx.doi.org/10.1039/B110779H] webciteAnalyst 2002, 127:433-450.
  • [21]Breiman L: Statistical modeling: The two cultures. Statistical Science 2001, 16(3):199-215.
  • [22]Hummel J, Strehmel N, Selbig J, Walther D, Kopka J: Decision tree supported substructure prediction of metabolites from GC-MS profiles. Metabolomics 2010, 6(2):322-333.
  • [23]Kodama S, Saito K, Yachi Y, Asumi M, Sugawara A, Totsuka K, Saito A, Sone H: Association Between Serum Uric Acid and Development of Type 2 Diabetes. Diabetes Care 2009, 32(9):1737-1742.
  • [24]Pfister R, Barnes D, Luben R, Forouhi NG, Bochud M, Khaw KT, Wareham NJ, Langenberg C: No evidence for a causal link between uric acid and type 2 diabetes: a Mendelian randomisation approach. Diabetologia 2011, 54(10):2561-2569.
  • [25]Fox I: Metabolic basis for disorders of purine nucleotide degradation. Metabolism-Clinical and Experimental 1981, 30(6):616-634.
  • [26]Tsouli SG, Liberopoulos EN, Mikhailidis DP, Athyros VG, Elisaf MS: Elevated serum uric acid levels in metabolic syndrome: an active component or an innocent bystander? Metabolism-Clinical and Experimental 2006, 55(10):1293-1301.
  • [27]Harkness R: Hypoxanthine, Xanthine and Uridine in Body-Fluids, Indicators of ATP Depletion. Journal of Chromatography-Biomedical Applications 1988, 429:255-278.
  • [28]Yamamoto T, Moriwaki Y, Takahashi S, Tsutsumi Z, Yamakita J, Nakano T, Higashino K: Effect of glucose on the plasma concentration and urinary excretion of uridine and purine bases. Metabolism-Clinical and Experimental 1999, 48(3):338-341.
  • [29]Nakagawa T, Hu H, Zharikov S, Tuttle K, Short R, Glushakova O, Ouyang X, Feig D, Block E, Herrera-Acosta J, Patel J, Johnson R: A causal role for uric acid in fructose-induced metabolic syndrome. American Journal of Physiology-Renal Physiology 2006, 290(3):F625-F631.
  • [30]Yeldandi A, Wang X, Alvares K, Kumar S, Rao M, Reddy J: Human Urate Oxidase Gene - Cloning and Partial Sequence-Analysis Reveal a Stop Codon Within the 5th Exon. Biochemical and Biophysical Research Communications 1990, 171(2):641-646.
  • [31]Kim KM, Henderson GN, Frye RF, Galloway CD, Brown NJ, Segal MS, Imaram W, Angerhofer A, Johnson RJ: Simultaneous determination of uric acid metabolites allantoin, 6-aminouracil, and triuret in human urine using liquid chromatography-mass spectrometry. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 2009, 877(1-2):65-70.
  • [32]Yang H, Jin X, Lam CWK, Yan SK: Oxidative stress and diabetes mellitus. Clinical Chemistry and Laboratory Medicine 2011, 49(11):1773-1782.
  • [33]Meister A: Glutathione - Metabolism and Function via gamma-Glutamyl Cycle. Life Sciences 1974, 15(2):177-190.
  • [34]Xiong Y, Uys JD, Tew KD, Townsend DM: S-Glutathionylation: From Molecular Mechanisms to Health Outcomes. Antioxidants & Redox Signaling 2011, 15(1):233-270.
  • [35]Mikhailidis DP, Lioudaki E, Ganotakis ES: Liver enzymes: potential cardiovascular risk markers? Current pharmaceutical design 2011, L17(33):3632-43.
  • [36]Wu J, Yan Wh, Qiu L, Chen Xq, Guo Xz, Wu W, Xia Ly, Qin Xz, Liu Yh, Ding Ht, Han Sm, Xu Cl, Zhu Gj: High prevalence of coexisting prehypertension and prediabetes among healthy adults in northern and northeastern China. BMC Public Health 2011., 11
  • [37]Xu Y, Xu M, Huang Y, Wang T, Li M, Wu Y, Song A, Li X, Bi Y, Ning G: Elevated serum gamma-glutamyltransferase predicts the development of impaired glucose metabolism in middle-aged and elderly Chinese. Endocrine 2011, 40(2):265-272.
  • [38]Succurro E, Arturi F, Grembiale A, Iorio F, Fiorentino TV, Andreozzi F, Sciacqua A, Hribal ML, Perticone F, Sesti G: One-hour post-load plasma glucose levels are associated with elevated liver enzymes. Nutrition Metabolism and Cardiovascular Diseases 2011, 21(9):713-718.
  • [39]Sun J, Ren J, Pang ZC, Gao WG, Nan HR, Wang SJ, Zhang L, Qian Q: The association of gamma-glutamyltransferase and C-reactive protein with IFG/IGT in Chinese adults in Qingdao, China. Clinica Chimica Acta 2011, 412(17-18):1658-1661.
  • [40]Rueckert IM, Heier M, Rathmann W, Baumeister SE, Doering A, Meisinger C: Association between Markers of Fatty Liver Disease and Impaired Glucose Regulation in Men and Women from the General Population: The KORA-F4-Study. Plos One 2011., 6(8)
  • [41]Evliyaoglu O, Kibrisli E, Yildirim Y, Gokalp O, Colpan L: Routine enzymes in the monitoring of type 2 diabetes mellitus. Cell Biochemistry and Function 2011, 29(6):506-512.
  • [42]Bonnet F, Ducluzeau PH, Gastaldelli A, Laville M, Anderwald CH, Konrad T, Mari A, Balkan B, Grp RS: Liver Enzymes Are Associated With Hepatic Insulin Resistance, Insulin Secretion, and Glucagon Concentration in Healthy Men and Women. Diabetes 2011, 60(6):1660-1667.
  • [43]Qian Y, Ahmad M, Chen S, Gillespie P, Le N, Mennona F, Mischke S, So SS, Wang H, Burghardt C, Tannu S, Conde-Knape K, Kochan J, Bolin D: Discovery of 1-arylcarbonyl-6,7-dimethoxyisoquinoline derivatives as glutamine fructose-6-phosphate amidotransferase (GFAT) inhibitors. Bioorganic & Medicinal Chemistry Letters 2011, 21(21):6264-6269.
  • [44]Nagata M, Suzuki W, Iizuka S, Tabuchi M, Maruyama H, Takeda S, Aburada M, Miyamo K: Type 2 diabetes mellitus in obese mouse model induced by monosodium glutamate. Experimental Animals 2006, 55(2):109-115.
  • [45]Cameron D, Poon T, Smith G: Effects of Monosodium Glutamate Administration in Neonatal-Period on Diabetic Syndrome in KK Mice. Diabetologia 1976, 12(6):621-626.
  • [46]Iwase M, Yamamoto M, Iino K, Ichikawa K, Shinohara N, Yoshinari M, Fujishima M: Obesity induced by neonatal monosodium glutamate treatment in spontaneously hypertensive rats: An animal model of multiple risk factors. Hypertension Research-Clinical and Experimental 1998, 21(1):1-6.
  • [47]Komeda K, Yokote M, Oki Y: Diabetic Syndrome in the Chinese-Hamster Induced with Monosodium Glutamate. Experientia 1980, 36(2):232-234.
  • [48]Nakajima H, Tochino Y, Fujinokurihara H, Yamada K, Gomi M, Tajima K, Kanaya T, Miyazaki A, Miyagawa J, Hanafusa T, Mashita K, Kono N, Moriwaki K, Nonaka K, Tarui S: Decreased Incidence of Diabetes-Mellitus by Monosodium Glutamate in the non-Obese Diabetic (NOD) Mouse. Research Communications in Chemical Pathology and Pharmacology 1985, 50(2):251-257.
  • [49]Lobato NS, Filgueira FP, Akamine EH, Davel APC, Rossoni LV, Tostes RC, Carvalho MHC, Fortes ZB: Obesity induced by neonatal treatment with monosodium glutamate impairs microvascular reactivity in adult rats: Role of NO and prostanoids. Nutrition Metabolism and Cardiovascular Diseases 2011, 21(10):808-816.
  • [50]Collison KS, Zaidi MZ, Saleh SM, Inglis A, Mondreal R, Makhoul NJ, Bakheet R, Burrows J, Milgram NW, Al-Mohanna FA: Effect of trans-fat, fructose and monosodium glutamate feeding on feline weight gain, adiposity, insulin sensitivity, adipokine and lipid profile. British Journal of Nutrition 2011, 106(2):218-226.
  • [51]Samocha-Bonet D, Wong O, Synnott EL, Piyaratna N, Douglas A, Gribble FM, Holst JJ, Chisholm DJ, Greenfield JR: Glutamine Reduces Postprandial Glycemia and Augments the Glucagon-Like Peptide-1 Response in Type 2 Diabetes Patients. Journal of Nutrition 2011, 141(7):1233-1238.
  • [52]Kalkman HO: Circumstantial evidence for a role of glutamine-synthetase in suicide. Medical Hypotheses 2011, 76(6):905-907.
  • [53]Nakazawa T, Shimura M, Ryu M, Nishida K, Pages G, Pouyssegur J, Endo S: ERK1 plays a critical protective role against N-methyl-D-aspartate-induced retinal injury. Journal of Neuroscience Research 2008, 86(1):136-144.
  • [54]Abu Fanne R, Nassar T, Heyman SN, Hijazi N, Higazi AAR: Insulin and glucagon share the same mechanism of neuroprotection in diabetic rats: role of glutamate. American Journal of Physiology-Regulatory Integrative and Comparative Physiology 2011, 301(3):R668-R673.
  • [55]Bousova I, Bakala H, Chudacek R, Palicka V, Drsata J: Glycation-induced inactivation of aspartate aminotransferase, effect of uric acid. Molecular and Cellular Biochemistry 2005, 278(1-2):85-92.
  • [56]Hageman R, Severijnen C, van de Heijning BJM, Bouritius H, van Wijk N, van Laere K, van der Beek EM: A specific blend of intact protein rich in aspartate has strong postprandial glucose attenuating properties in rats. Journal of Nutrition 2008, 138(9):1634-1640.
  • [57]Arai T, Sasaki M, Shiomi M, Nonaka T, Ochiai K, Oki Y: Alterations in Acetyl Coenzyme-A Carboxylase Activities in Voles and Mice Treated with Monosodium Aspartate. Journal of Veterinary Medical Science 1992, 54(1):131-135.
  • [58]Large V, Beylot M: Modifications of citric acid cycle activity and gluconeogenesis in streptozotocin-induced diabetes and effects of metformin. Diabetes 1999, 48(6):1251-1257.
  • [59]Ortenblad N, Mogensen M, Petersen I, Hojlund K, Levin K, Sahlin K, Beck-Nielsen H, Gaster M: Reduced insulin-mediated citrate synthase activity in cultured skeletal muscle cells from patients with type 2 diabetes: Evidence for an intrinsic oxidative enzyme defect. Biochimica et Biophysica Acta-Molecular Basis of Disease 2005, 1741(1-2):206-214.
  • [60]Liu Y, Tornheim K, Leahy J: Shared biochemical properties of glucotoxicity and lipotoxicity in islets decrease citrate synthase activity and increase phosphofructokinase activity. Diabetes 1998, 47(12):1889-1893.
  • [61]Gnoni GV, Priore P, Geelen MJH, Siculella L: The Mitochondrial Citrate Carrier: Metabolic Role and Regulation of its Activity and Expression. IUBMB Life 2009, 61(10):987-994.
  • [62]Gnoni GV, Giudetti AM, Mercuri E, Damiano F, Stanca E, Priore P, Siculella L: Reduced Activity and Expression of Mitochondrial Citrate Carrier in Streptozotocin-Induced Diabetic Rats. Endocrinology 2010, 151(4):1551-1559.
  • [63]Birkenfeld AL, Lee HY, Guebre-Egziabher F, Alves TC, Jurczak MJ, Jornayvaz FR, Zhang D, Hsiao JJ, Martin-Montalvo A, Fischer-Rosinsky A, Spranger J, Pfeiffer AF, Jordan J, Fromm MF, Koenig J, Lieske S, Carmean CM, Frederick DW, Weismann D, Knauf F, Irusta PM, De Cabo R, Helfand SL, Samuel VT, Shulman GI: Deletion of the Mammalian INDY Homo log Mimics Aspects of Dietary Restriction and Protects against Adiposity and Insulin Resistance in Mice. Cell Metabolism 2011, 14(2):184-195.
  • [64]Hasan NM, Longacre MJ, Ahmed MS, Kendrick MA, Gu H, Ostenson CG, Fukao T, MacDonald MJ: Lower succinyl-CoA:3-ketoacid-CoA transferase (SCOT) and ATP citrate lyase in pancreatic islets of a rat model of type 2 diabetes: Knockdown of SCOT inhibits insulin release in rat insulinoma cells. Archives of Biochemistry and Biophysics 2010, 499(1-2):62-68.
  • [65]Park SW, Kim KS, Whang SK, Kim JS, Kim YS: Induction of hepatic ATP-citrate lyase by insulin in diabetic rat-effects of insulin on the contents of enzyme and its mRNA in cytosol, and the transcriptional activity in nuclei. Yonsei medical journal 1994, 35(1):25-33.
  • [66]Chu KY, Lin Y, Hendel A, Kulpa JE, Brownsey RW, Johnson JD: ATP-Citrate Lyase Reduction Mediates Palmitate-induced Apoptosis in Pancreatic Beta Cells. Journal of Biological Chemistry 2010, 285(42):32606-32615.
  • [67]Wang Q, Jiang L, Wang J, Li S, Yu Y, You J, Zeng R, Gao X, Rui L, Li W, Liu Y: Abrogation of Hepatic ATP-Citrate Lyase Protects Against Fatty Liver and Ameliorates Hyperglycemia in Leptin Receptor-Deficient Mice. Hepatology 2009, 49(4):1166-1175.
  • [68]Michno A, Skibowska A, Raszeja-Specht A, Cwikowska J, Szutowicz A: The role of adenosine triphosphate-citrate lyase in the metabolism of acetyl-coenzyme A and function of blood platelets in diabetes mellitus. Metabolism-Clinical and Experimental 2004, 53(1):66-72.
  • [69]Muroyama K, Murosaki S, Yamamoto Y, Odaka H, Chung H, Miyoshi M: Anti-obesity effects of a mixture of thiamin, arginine, caffeine, and citric acid in non-insulin dependent diabetic KK mice. Journal of Nutritional Science and Vitaminology 2003, 49(1):56-63.
  • [70]Cupisti A, Meola M, D'Alessandro C, Bernabini G, Pasquali E, Carpi A, Barsotti G: Insulin resistance and low urinary citrate excretion in calcium stone formers. Biomedicine & Pharmacotherapy 2007, 61(1):86-90.
  • [71]McCarthy MI: Genomic Medicine Genomics, Type 2 Diabetes, and Obesity. New England Journal of Medicine 2010, 363(24):2339-2350.
  • [72]Froguel P: Genetics of obesity and type 2 diabetes. Diabetes Obesity & Metabolism 2010, 12(1):5.
  • [73]Lyssenko V, Jonsson A, Almgren P, Pulizzi N, Isomaa B, Tuomi T, Berglund G, Altshuler D, Nilsson P, Groop L: Clinical Risk Factors, DNA Variants, and the Development of Type 2 Diabetes. New England Journal of Medicine 2008, 359(21):2220-2232.
  • [74]Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, Wheeler E, Glazer NL, Bouatia-Naji N, Gloyn AL, Lindgren CM, Magi R, Morris AP, Randall J, Johnson T, Elliott P, Rybin D, Thorleifsson G, Steinthorsdottir V, Henneman P, Grallert H, Dehghan A, Hottenga JJ, Franklin CS, Navarro P, Song K, Goel A, Perry JRB, Egan JM, Lajunen T, Grarup N, et al.: New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nature Genetics 2010, 42(2):105-U32.
  文献评价指标  
  下载次数:5次 浏览次数:20次