期刊论文详细信息
Journal of Ovarian Research
Integrative network analysis for survival-associated gene-gene interactions across multiple genomic profiles in ovarian cancer
Kyung-Ah Sohn1  Kyubum Wee1  Sangseob Leem1  Hyun-hwan Jeong1 
[1] Department of Information and Computer Engineering, Ajou University, Suwon 443-749, Republic of Korea
关键词: TCGA;    Survival analysis;    Integrative network analysis;    Outcome-associated gene interaction network;    Mutual information;   
Others  :  1218018
DOI  :  10.1186/s13048-015-0171-1
 received in 2014-12-23, accepted in 2015-06-24,  发布年份 2015
PDF
【 摘 要 】

Background

Recent advances in high-throughput technology and the emergence of large-scale genomic datasets have enabled detection of genomic features that affect clinical outcomes. Although many previous computational studies have analysed the effect of each single gene or the additive effects of multiple genes on the clinical outcome, less attention has been devoted to the identification of gene-gene interactions of general type that are associated with the clinical outcome. Moreover, the integration of information from multiple molecular profiles adds another challenge to this problem. Recently, network-based approaches have gained huge popularity. However, previous network construction methods have been more concerned with the relationship between features only, rather than the effect of feature interactions on clinical outcome.

Methods

We propose a mutual information-based integrative network analysis framework (MINA) that identifies gene pairs associated with clinical outcome and systematically analyses the resulting networks over multiple genomic profiles. We implement an efficient non-parametric testing scheme that ensures the significance of detected gene interactions. We develop a tool named MINA that automates the proposed analysis scheme of identifying outcome-associated gene interactions and generating various networks from those interacting pairs for downstream analysis.

Results

We demonstrate the proposed framework using real data from ovarian cancer patients in The Cancer Genome Atlas (TCGA). Statistically significant gene pairs associated with survival were identified from multiple genomic profiles, which include many individual genes that have weak or no effect on survival. Moreover, we also show that integrated networks, constructed by merging networks from multiple genomic profiles, demonstrate better topological properties and biological significance than individual networks.

Conclusions

We have developed a simple but powerful analysis tool that is able to detect gene-gene interactions associated with clinical outcome on multiple genomic profiles. By being network-based, our approach provides a better insight into the underlying gene-gene interaction mechanisms that affect the clinical outcome of cancer patients.

【 授权许可】

   
2015 Jeong et al.

【 预 览 】
附件列表
Files Size Format View
20150709095545270.pdf 2976KB PDF download
Fig. 7. 62KB Image download
Fig. 6. 83KB Image download
Fig. 5. 49KB Image download
Fig. 4. 34KB Image download
Fig. 3. 77KB Image download
Fig. 2. 27KB Image download
Fig. 1. 72KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

【 参考文献 】
  • [1]West M, Ginsburg GS, Huang AT, Nevins JR. Embracing the complexity of genomic data for personalized medicine. Genome Res. 2006; 16(5):559-66.
  • [2]Li M, Balch C, Montgomery JS, Jeong M, Chung JH, Yan P et al.. Integrated analysis of DNA methylation and gene expression reveals specific signaling pathways associated with platinum resistance in ovarian cancer. BMC Med Genet. 2009; 2:34.
  • [3]Akavia UD, Litvin O, Kim J, Sanchez-Garcia F, Kotliar D, Causton HC et al.. An integrated approach to uncover drivers of cancer. Cell. 2010; 143(6):1005-17.
  • [4]Natrajan R, Weigelt B, Mackay A, Geyer F, Grigoriadis A, Tan DP et al.. An integrative genomic and transcriptomic analysis reveals molecular pathways and networks regulated by copy number aberrations in basal-like, HER2 and luminal cancers. Breast Cancer Res Treat. 2010; 121(3):575-89.
  • [5]Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS et al.. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010; 18(1):11-22.
  • [6]Integrated genomic analyses of ovarian carcinoma. Nature. 2011; 474:609-15.
  • [7]Cho Y-J, Tsherniak A, Tamayo P, Santagata S, Ligon A, Greulich H et al.. Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J Clin Oncol. 2011; 29(11):1424-30.
  • [8]Du Z, Fei T, Verhaak RGW, Su Z, Zhang Y, Brown M et al.. Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat Struct Mol Biol. 2013; 20(7):908-13.
  • [9]Mankoo PK, Shen R, Schultz N, Levine DA, Sander C. Time to recurrence and survival in serous ovarian tumors predicted from integrated genomic profiles. PLoS ONE. 2011; 6(11):e24709.
  • [10]Kim D, Shin H, Song YS, Kim JH. Synergistic effect of different levels of genomic data for cancer clinical outcome prediction. J Biomed Inform. 2012; 45:1191-8.
  • [11]Li Q, Seo J-H, Stranger B, McKenna A, Pe’er I, LaFramboise T et al.. Integrative eQTL-based analyses reveal the biology of breast cancer risk loci. Cell. 2013; 152(3):633-41.
  • [12]Mo Q, Wang S, Seshan VE, Olshen AB, Schultz N, Sander C et al.. Pattern discovery and cancer gene identification in integrated cancer genomic data. Proc Natl Acad Sci. 2013; 110(11):4245-50.
  • [13]Joung J-G, Kim D, Lee SY, Kang HJ, Kim JH. Integrated analysis of microRNA-target interactions with clinical outcomes for cancers. BMC Med Genet. 2014; 7 Suppl 1:S10.
  • [14]Kim D, Shin H, Sohn K-A, Verma A, Ritchie MD, Kim JH. Incorporating inter-relationships between different levels of genomic data into cancer clinical outcome prediction. Methods. 2014; 67(3):344-53.
  • [15]Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, Brudno M et al.. Similarity network fusion for aggregating data types on a genomic scale. Nat Meth. 2014; 11(3):333-7.
  • [16]Loi S, Michiels S, Lambrechts D, Fumagalli D, Claes B, Kellokumpu-Lehtinen P-L et al.. Somatic mutation profiling and associations with prognosis and trastuzumab benefit in early breast cancer. J Natl Cancer Inst. 2013; 105(13):960-7.
  • [17]Patani N, Jiang WG, Newbold RF, Mokbel K. Histone-modifier gene expression profiles are associated with pathological and clinical outcomes in human breast cancer. Anticancer Res. 2011; 31(12):4115-25.
  • [18]Wong K-K, Izaguirre DI, Kwan S-Y, King ER, Deavers MT, Sood AK et al.. Poor survival with wild-type TP53 ovarian cancer? Gynecol Oncol. 2013; 130(3):565-9.
  • [19]Chen R, Khatri P, Mazur PK, Polin M, Zheng Y, Vaka D et al.. A meta-analysis of lung cancer gene expression identifies PTK7 as a survival gene in lung adenocarcinoma. Cancer Res. 2014.
  • [20]Yoshihara K, Tsunoda T, Shigemizu D, Fujiwara H, Hatae M, Fujiwara H et al.. High-risk ovarian cancer based on 126-gene expression signature is uniquely characterized by downregulation of antigen presentation pathway. Clin Cancer Res. 2012; 18:1374-85.
  • [21]Zhang W, Ota T, Shridhar V, Chien J, Wu B, Kuang R. Network-based survival analysis reveals subnetwork signatures for predicting outcomes of ovarian cancer treatment. PLoS Comput Biol. 2013; 9:e1002975.
  • [22]Vandin F, Upfal E, Raphael BJ. Algorithms for detecting significantly mutated pathways in cancer. J Comput Biol. 2011; 18(3):507-22.
  • [23]Vandin F, Clay P, Upfal E, Raphael BJ. Discovery of mutated subnetworks associated with clinical data in cancer. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing. 2012.
  • [24]Pauling JK, Christensen AG, Batra R, Alcaraz N, Barbosa E, Larsen MR et al.. Elucidation of epithelial-mesenchymal transition-related pathways in a triple-negative breast cancer cell line model by multi-omics interactome analysis. Integr Biol. 2014; 6(11):1058-68.
  • [25]Gorringe KL, George J, Anglesio MS, Ramakrishna M, Etemadmoghadam D, Cowin P et al. Copy number analysis identifies novel interactions between genomic loci in ovarian cancer. PLoS One. 2010;5. doi:10.1371/journal.pone.0011408
  • [26]Languino LR, Kohn KW, Zeeberg BM, Reinhold WC, Pommier Y. Gene expression correlations in human cancer cell lines define molecular interaction networks for epithelial phenotype. PLoS One. 2014; 9(6):e99269.
  • [27]Hong S, Dong H, Jin L, Xiong M. Gene co-expression network analysis of two ovarian cancer datasets. 2010.
  • [28]Hofree M, Shen JP, Carter H, Gross A, Ideker T. Network-based stratification of tumor mutations. Nat Methods. 2013; 10(11):1108-15.
  • [29]Jeong H-H, Kim S, Wee K, Sohn K-A. Investigating the utility of clinical outcome-guided mutual information network in network-based Cox regression. BMC Syst Biol. 2015; 9 Suppl 1:S8. BioMed Central Full Text
  • [30]Siegel R, Naishadham D, Jemal A. Cancer Statistics. 2013; 2013(63):11-30.
  • [31]Heintz APM, Odicino F, Maisonneuve P, Quinn MA, Benedet JL, Creasman WT et al.. Carcinoma of the ovary. FIGO 26th Annual Report on the Results of Treatment in Gynecological Cancer. Int J Gynaecol Obstet. 2006; 95 Suppl 1:S161-92.
  • [32]Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948; 27:379-423.
  • [33]Liang K-C, Wang X. Gene regulatory network reconstruction using conditional mutual information. EURASIP J Bioinform Syst Biol. 2008; 2008:253894.
  • [34]Butte AJ, Kohane IS. Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing. 2000.
  • [35]Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R et al.. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform. 2006; 7 Suppl 1:S7. BioMed Central Full Text
  • [36]Leem S, Jeong H-H, Lee J, Wee K, Sohn K-A. Fast detection of high-order epistatic interactions in genome-wide association studies using information theoretic measure. Comput Biol Chem. 2014.
  • [37]Steuer R, Kurths J, Daub CO, Weise J, Selbig J. The mutual information: detecting and evaluating dependencies between variables. Bioinformatics (Oxford, England). 2002; 18 Suppl 2:S231-40.
  • [38]Sohn I, Sung CO. Predictive modeling using a somatic mutational profile in ovarian high grade serous carcinoma. PLoS One. 2013; 8:e54089.
  • [39]Plackett RL. Karl Pearson and the Chi-squared test. Int Stat Rev. 1983; 51(1):59-72.
  • [40]Hahn LW, Ritchie MD, Moore JH. Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics. 2003; 19:376-82.
  • [41]Moore JH, Gilbert JC, Tsai C-T, Chiang F-T, Holden T, Barney N et al.. A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. J Theor Biol. 2006; 241:252-61.
  • [42]Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási AL. The large-scale organization of metabolic networks. Nature. 2000; 407:651-4.
  • [43]Diez D, Wheelock AM, Goto S, Haeggström JZ, Paulsson-Berne G, Hansson GK et al.. The use of network analyses for elucidating mechanisms in cardiovascular disease. Mol BioSyst. 2010; 6:289-304.
  • [44]Carter SL, Brechbühler CM, Griffin M, Bond AT. Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics (Oxford, England). 2004; 20:2242-50.
  • [45]Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005; 4:Article17.
  • [46]Reguly T, Breitkreutz A, Boucher L, Breitkreutz B-J, Hon GC, Myers CL et al.. Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae. J Biol. 2006; 5:11. BioMed Central Full Text
  • [47]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al.. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000; 25:25-9.
  • [48]Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al.. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13:2498-504.
  • [49]Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks. Bioinformatics. 2005; 21:3448-9.
  • [50]Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA et al.. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012; 2:401-4.
  • [51]Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO et al.. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013; 6:pl1.
  • [52]Mermel C, Schumacher S, Hill B, Meyerson M, Beroukhim R, Getz G. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 2011; 12(4):R41. BioMed Central Full Text
  • [53]Bashashati A, Haffari G, Ding J, Ha G, Lui K, Rosner J et al.. DriverNet: uncovering the impact of somatic driver mutations on transcriptional networks in cancer. Genome Biol. 2012; 13(12):R124. BioMed Central Full Text
  • [54]Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D et al.. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 2011; 39(suppl 1):D945-50.
  • [55]Jäättelä M. Escaping cell death: survival proteins in cancer. Exp Cell Res. 1999; 248:30-43.
  • [56]Mani A, Gelmann EP. The ubiquitin-proteasome pathway and its role in cancer. J Clin Oncol. 2005; 23:4776-89.
  • [57]Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011; 27(12):1739-40.
  • [58]Courtney KD, Corcoran RB, Engelman JA. The PI3K pathway as drug target in human cancer. J Clin Oncol. 2010; 28(6):1075-83.
  • [59]Mazzoletti M, Broggini M. PI3K/AKT/mTOR inhibitors in ovarian cancer. Curr Med Chem. 2010; 17(36):4433-47.
  • [60]Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 2014; 42(Database issue):D199-205.
  • [61]D’Andrilli G. Cell cycle genes in ovarian cancer: steps toward earlier diagnosis and novel therapies. Clin Cancer Res. 2004; 10(24):8132-41.
  • [62]Chang C-C, Hung C-M, Yang Y-R, Lee M-J, Hsu Y-C. Sulforaphane induced cell cycle arrest in the G2/M phase via the blockade of cyclin B1/CDC2 in human ovarian cancer cells. J Ovarian Res. 2013; 6(1):41. BioMed Central Full Text
  • [63]Sa R. Progress in human tumour immunology and immunotherapy. Nature. 2001; 411:380-4.
  • [64]Jin C, Yu W, Lou X, Zhou F, Han X, Zhao N et al.. UCHL1 is a putative tumor suppressor in ovarian cancer cells and contributes to cisplatin resistance. J Cancer. 2013; 4:662-70.
  • [65]Kobayashi H, Terao T, Kawashima Y. Serum sialyl Tn as an independent predictor of poor prognosis in patients with epithelial ovarian cancer. J Clin Oncol. 1992; 10:95-101.
  文献评价指标  
  下载次数:34次 浏览次数:3次