期刊论文详细信息
Cell & Bioscience
Regulation of Wnt/β-catenin signaling by posttranslational modifications
Jing Hu1  Gutian Xiao1  Chenxi Gao1 
[1] University of Pittsburgh Cancer Institute, Hillman Cancer Center Research Pavilion, 5117 Centre Avenue, Pittsburgh, PA 15213, USA
关键词: ADP-ribosylation;    Acetylation;    Sumoylation;    Ubiquitination;    Phosphorylaiton;    Posttranslational modification;    The Wnt/β-catenin pathway;   
Others  :  791067
DOI  :  10.1186/2045-3701-4-13
 received in 2013-11-13, accepted in 2014-01-07,  发布年份 2014
PDF
【 摘 要 】

The canonical Wnt signaling pathway (or Wnt/β-catenin pathway) plays a pivotal role in embryonic development and adult homeostasis; deregulation of the Wnt pathway contributes to the initiation and progression of human diseases including cancer. Despite its importance in human biology and disease, how regulation of the Wnt/β-catenin pathway is achieved remains largely undefined. Increasing evidence suggests that post-translational modifications (PTMs) of Wnt pathway components are essential for the activation of the Wnt/β-catenin pathway. PTMs create a highly dynamic relay system that responds to Wnt stimulation without requiring de novo protein synthesis and offer a platform for non-Wnt pathway components to be involved in the regulation of Wnt signaling, hence providing alternative opportunities for targeting the Wnt pathway. This review highlights the current status of PTM-mediated regulation of the Wnt/β-catenin pathway with a focus on factors involved in Wnt-mediated stabilization of β-catenin.

【 授权许可】

   
2014 Gao et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705010047318.pdf 1853KB PDF download
Figure 3. 54KB Image download
Figure 2. 45KB Image download
Figure 1. 51KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Kohn AD, Moon RT: Wnt and calcium signaling: β-catenin-independent pathways. Cell Calcium 2005, 38(3–4):439-446.
  • [2]De A: Wnt/Ca2+ signaling pathway: a brief overview. Acta Biochim Biophys Sin 2011, 43(10):745-756.
  • [3]Veeman MT, Axelrod JD, Moon RT: A second canon: functions and mechanisms of β-catenin-independent Wnt signaling. Dev Cell 2003, 5(3):367-377.
  • [4]MacDonald BT, Tamai K, He X: Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009, 17(1):9-26.
  • [5]Clevers H: Wnt/β-catenin signaling in development and disease. Cell 2006, 127(3):469-480.
  • [6]Clevers H, Nusse R: Wnt/β-catenin signaling and disease. Cell 2012, 149(6):1192-1205.
  • [7]Polakis P: Wnt signaling and cancer. Genes Dev 2000, 14(15):1837-1851.
  • [8]Cadigan KM, Peifer M: Wnt signaling from development to disease: insights from model systems. Cold Spring Harb Perspect Biol 2009, 1(2):a002881.
  • [9]Logan CY, Nusse R: The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004, 20(1):781-810.
  • [10]Luo J, Chen J, Deng ZL, Luo X, Song WX, Sharff KA, Tang N, Haydon RC, Luu HH, He TC: Wnt signaling and human diseases: what are the therapeutic implications? Lab Invest 2007, 87(2):97-103.
  • [11]Stamos JL, Weis WI: The β-catenin destruction complex. Cold Spring Harb Perspect Biol 2013, 5(1):a007898.
  • [12]Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, Zhang Z, Lin X, He X: Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 2002, 108(6):837-847.
  • [13]Jiang J, Struhl G: Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature 1998, 391(6666):493-496.
  • [14]Liu C, Kato Y, Zhang Z, Do VM, Yankner BA, He X: β-Trcp couples β-catenin phosphorylation-degradation and regulates Xenopus axis formation. Proc Natl Acad Sci U S A 1999, 96(11):6273-6278.
  • [15]Cong F, Schweizer L, Varmus H: Wnt signals across the plasma membrane to activate the β-catenin pathway by forming oligomers containing its receptors, Frizzled and LRP. Development 2004, 131(20):5103-5115.
  • [16]Hernández AR, Klein AM, Kirschner MW: Kinetic responses of β-catenin specify the sites of Wnt control. Science 2012, 338(6112):1337-1340.
  • [17]Kim SE, Huang H, Zhao M, Zhang X, Zhang A, Semonov MV, MacDonald BT, Zhang X, Abreu JG, Peng L, He X: Wnt stabilization of β-catenin reveals principles for morphogen receptor-scaffold assemblies. Science 2013, 340(6134):867-870.
  • [18]Li Vivian SW, Ng Ser S, Boersema Paul J, Low Teck Y, Karthaus Wouter R, Gerlach Jan P, Mohammed S, Heck Albert JR, Maurice Madelon M, Mahmoudi T, Clevers H: Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex. Cell 2012, 149(6):1245-1256.
  • [19]Wodarz A, Nusse R: Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 1998, 14(1):59-88.
  • [20]Peifer M, Polakis P: Wnt signaling in oncogenesis and embryogenesis–a look outside the nucleus. Science 2000, 287(5458):1606-1609.
  • [21]Deribe YL, Pawson T, Dikic I: Post-translational modifications in signal integration. Nat Struct Mol Biol 2010, 17(6):666-672.
  • [22]Jensen ON: Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol 2006, 7(6):391-403.
  • [23]Willert K, Nusse R: Wnt proteins. Cold Spring Harb Perspect Biol 2012, 4(9):a007864.
  • [24]Ke J, Xu HE, Williams BO: Lipid modification in Wnt structure and function. Curr Opin Lipidol 2013, 24(2):129-133.
  • [25]Yanfeng WA, Tan C, Fagan RJ, Klein PS: Phosphorylation of frizzled-3. J Biol Chem 2006, 281(17):11603-11609.
  • [26]Djiane A, Yogev S, Mlodzik M: The apical determinants aPKC and dPatj regulate Frizzled-dependent planar cell polarity in the Drosophila Eye. Cell 2005, 121(4):621-631.
  • [27]Koo BK, Spit M, Jordens I, Low TY, Stange DE, van de Wetering M, van Es JH, Mohammed S, Heck AJR, Maurice MM, Clevers H: Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature 2012, 488(7413):665-669.
  • [28]Hao HX, Xie Y, Zhang Y, Charlat O, Oster E, Avello M, Lei H, Mickanin C, Liu D, Ruffner H, Mao X, Ma Q, Zamponi R, Bouwmeester T, Finan PM, Kirschner MW, Porter JA, Serluca FC, Cong F: ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature 2012, 485(7397):195-200.
  • [29]Mukai A, Yamamoto-Hino M, Awano W, Watanabe W, Komada M, Goto S: Balanced ubiquitylation and deubiquitylation of Frizzled regulate cellular responsiveness to Wg/Wnt. EMBO J 2010, 29(13):2114-2125.
  • [30]Yamamoto A, Nagano T, Takehara S, Hibi M, Aizawa S: Shisa promotes head formation through the inhibition of receptor protein maturation for the caudalizing factors, Wnt and FGF. Cell 2005, 120(2):223-235.
  • [31]Davidson G, Wu W, Shen J, Bilic J, Fenger U, Stannek P, Glinka A, Niehrs C: Casein kinase 1γ couples Wnt receptor activation to cytoplasmic signal transduction. Nature 2005, 438(7069):867-872.
  • [32]Zeng X, Tamai K, Doble B, Li S, Huang H, Habas R, Okamura H, Woodgett J, He X: A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 2005, 438(7069):873-877.
  • [33]MacDonald BT, Yokota C, Tamai K, Zeng X, He X: Wnt signal amplification via activity, cooperativity, and regulation of multiple intracellular PPPSP motifs in the Wnt co-receptor LRP6. J Biol Chem 2008, 283(23):16115-16123.
  • [34]Chen M, Philipp M, Wang J, Premont RT, Garrison TR, Caron MG, Lefkowitz RJ, Chen W: G protein-coupled receptor kinases phosphorylate LRP6 in the Wnt pathway. J Biol Chem 2009, 284(50):35040-35048.
  • [35]Červenka I, Wolf J, Mašek J, Krejci P, Wilcox WR, Kozubík A, Schulte G, Gutkind JS, Bryja V: Mitogen-activated protein kinases promote WNT/β-catenin signaling via phosphorylation of LRP6. Mol Cell Biol 2011, 31(1):179-189.
  • [36]Swiatek W, Kang H, Garcia BA, Shabanowitz J, Coombs GS, Hunt DF, Virshup DM: Negative regulation of LRP6 function by casein kinase Iϵ phosphorylation. J Biol Chem 2006, 281(18):12233-12241.
  • [37]Wan M, Yang C, Li J, Wu X, Yuan H, Ma H, He X, Nie S, Chang C, Cao X: Parathyroid hormone signaling through low-density lipoprotein-related protein 6. Genes Dev 2008, 22(21):2968-2979.
  • [38]Davidson G, Shen J, Huang YL, Su Y, Karaulanov E, Bartscherer K, Hassler C, Stannek P, Boutros M, Niehrs C: Cell cycle control of Wnt receptor activation. Dev Cell 2009, 17(6):788-799.
  • [39]Abrami L, Kunz B, Iacovache I, van der Goot FG: Palmitoylation and ubiquitination regulate exit of the Wnt signaling protein LRP6 from the endoplasmic reticulum. Proc Natl Acad Sci U S A 2008, 105(14):5384-5389.
  • [40]MacDonald BT, Semenov MV, Huang H, He X: Dissecting molecular differences between Wnt coreceptors LRP5 and LRP6. PLoS One 2011, 6(8):e23537.
  • [41]Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A: Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin. EMBO J 1998, 17(5):1371-1384.
  • [42]Yamamoto H, Kishida S, Kishida M, Ikeda S, Takada S, Kikuchi A: Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3β regulates its stability. J Biol Chem 1999, 274(16):10681-10684.
  • [43]Jho E, Lomvardas S, Costantini F: A GSK3β phosphorylation site in axin modulates interaction with β-catenin and Tcf-mediated gene expression. Biochem Biophys Res Commun 1999, 266(1):28-35.
  • [44]Zhang Y, Liu S, Mickanin C, Feng Y, Charlat O, Michaud GA, Schirle M, Shi X, Hild M, Bauer A, Myer VE, Finan PM, Porter JA, Huang SM, Cong F: RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling. Nat Cell Biol 2011, 13(5):623-629.
  • [45]Callow MG, Tran H, Phu L, Lau T, Lee J, Sandoval WN, Liu PS, Bheddah S, Tao J, Lill JR, Hongo JA, Davis D, Kirkpatrick DS, Polakis P, Costa M: Ubiquitin ligase RNF146 regulates tankyrase and Axin to promote Wnt signaling. PLoS One 2011, 6(7):e22595.
  • [46]Fei C, Li Z, Li C, Chen Y, Chen Z, He X, Mao L, Wang X, Zeng R, Li L: Smurf1-mediated Lys29-linked nonproteolytic polyubiquitination of Axin negatively regulates Wnt/β-catenin signaling. Mol Cell Biol 2013, 33(20):4095-4105.
  • [47]Kim S, Jho EH: The Protein stability of Axin, a negative regulator of Wnt signaling, is regulated by Smad ubiquitination regulatory factor 2 (Smurf2). J Biol Chem 2010, 285(47):36420-36426.
  • [48]Rui H-L, Fan E, Zhou H-M, Xu Z, Zhang Y, Lin S-C: SUMO-1 modification of the C-terminal KVEKVD of Axin is required for JNK activation but has no effect on Wnt signaling. J Biol Chem 2002, 277(45):42981-42986.
  • [49]Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner S, Hild M, Shi X, Wilson CJ, Mickanin C, Myer V, Fazal A, Tomlinson R, Serluca F, Shao W, Cheng H, Shultz M, Rau C, Schirle M, Schlegl J, Ghidelli S, Fawell S, Lu C, Curtis D, Kirschner MW, Lengauer C, et al.: Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 2009, 461(7264):614-620.
  • [50]Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA: Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995, 378(6559):785-789.
  • [51]Fang X, Yu SX, Lu Y, Bast RC, Woodgett JR, Mills GB: Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci U S A 2000, 97(22):11960-11965.
  • [52]Ballou LM, Tian PY, Lin HY, Jiang YP, Lin RZ: Dual regulation of glycogen synthase kinase-3β by the α1A-adrenergic receptor. J Biol Chem 2001, 276(44):40910-40916.
  • [53]Doble BW, Woodgett JR: GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 2003, 116(7):1175-1186.
  • [54]Zhang HH, Lipovsky AI, Dibble CC, Sahin M, Manning BD: S6K1 regulates GSK3 under conditions of mTOR-dependent feedback inhibition of Akt. Mol Cell 2006, 24(2):185-197.
  • [55]Hughes K, Nikolakaki E, Plyte SE, Totty NF, Woodgett JR: Modulation of the glycogen synthase kinase-3 family by tyrosine phosphorylation. EMBO J 1993, 12(2):803-808.
  • [56]Sayas CL, Ariaens A, Ponsioen B, Moolenaar WH: GSK-3 is activated by the tyrosine kinase Pyk2 during LPA1-mediated neurite retraction. Mol Biol Cell 2006, 17(4):1834-1844.
  • [57]Cole A, Frame S, Cohen P: Further evidence that the tyrosine phosphorylation of glycogen synthase kinase-3 (GSK3) in mammalian cells is an autophosphorylation event. Biochem J 2004, 377(Pt 1):249-255.
  • [58]Ding Q, Xia W, Liu JC, Yang JY, Lee DF, Xia J, Bartholomeusz G, Li Y, Pan Y, Li Z, Bargou RC, Qin J, Lai CC, Tsai FJ, Tsai CH, Hung MC: Erk associates with and primes GSK-3β for its inactivation resulting in upregulation of β-catenin. Mol Cell 2005, 19(2):159-170.
  • [59]Thornton TM, Pedraza-Alva G, Deng B, Wood CD, Aronshtam A, Clements JL, Sabio G, Davis RJ, Matthews DE, Doble B, Rincon M: Phosphorylation by p38 MAPK as an alternative pathway for GSK3β inactivation. Science 2008, 320(5876):667-670.
  • [60]Failor KL, Desyatnikov Y, Finger LA, Firestone GL: Glucocorticoid-induced degradation of glycogen synthase kinase-3 protein is triggered by serum- and glucocorticoid-induced protein kinase and Akt signaling and controls β-catenin dynamics and tight junction formation in mammary epithelial tumor cells. Mol Endocrinol 2007, 21(10):2403-2415.
  • [61]Eun Jeoung L, Sung Hee H, Jaesun C, Sung Hwa S, Kwang Hum Y, Min Kyoung K, Tae Yoon P, Sang Sun K: Regulation of glycogen synthase kinase 3beta functions by modification of the small ubiquitin-like modifier. Open Biochem J 2008, 2:67-76.
  • [62]Feijs KL, Kleine H, Braczynski A, Forst A, Herzog N, Verheugd P, Linzen U, Kremmer E, Luscher B: ARTD10 substrate identification on protein microarrays: regulation of GSK3beta by mono-ADP-ribosylation. Cell Commun Signal 2013, 11(1):5. BioMed Central Full Text
  • [63]Ikeda S, Kishida M, Matsuura Y, Usui H, Kikuchi A: GSK-3β-dependent phosphorylation of adenomatous polyposis coli gene product can be modulated by beta-catenin and protein phosphatase 2A complexed with Axin. Oncogene 2000, 19(4):537-545.
  • [64]Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S, Polakis P: Binding of GSK3β to the APC-β-catenin complex and regulation of complex assembly. Science 1996, 272(5264):1023-1026.
  • [65]Ha NC, Tonozuka T, Stamos JL, Choi HJ, Weis WI: Mechanism of phosphorylation-dependent binding of APC to β-catenin and its role in β-catenin degradation. Mol Cell 2004, 15(4):511-521.
  • [66]Rubinfeld B, Tice DA, Polakis P: Axin-dependent phosphorylation of the adenomatous polyposis coli protein mediated by casein kinase 1ϵ. J Biol Chem 2001, 276(42):39037-39045.
  • [67]Choi J, Park SY, Costantini F, Jho E-h, Joo C-K: Adenomatous polyposis coli is down-regulated by the ubiquitin-proteasome pathway in a process facilitated by Axin. J Biol Chem 2004, 279(47):49188-49198.
  • [68]Huang X, Langelotz C, Hetfeld-Pěchoč BK, Schwenk W, Dubiel W: The COP9 signalosome mediates β-catenin degradation by deneddylation and blocks adenomatous polyposis coli destruction via USP15. J Mol Biol 2009, 391(4):691-702.
  • [69]Tran H, Hamada F, Schwarz-Romond T, Bienz M: Trabid, a new positive regulator of Wnt-induced transcription with preference for binding and cleaving K63-linked ubiquitin chains. Genes Dev 2008, 22(4):528-542.
  • [70]Tran H, Bustos D, Yeh R, Rubinfeld B, Lam C, Shriver S, Zilberleyb I, Lee MW, Phu L, Sarkar AA, Zohn IE, Wertz IE, Kirkpatrick DS, Polakis P: HectD1 E3 ligase modifies adenomatous polyposis coli (APC) with polyubiquitin to promote the APC-Axin interaction. J Biol Chem 2013, 288(6):3753-3767.
  • [71]Klimowski LK, Garcia BA, Shabanowitz J, Hunt DF, Virshup DM: Site-specific casein kinase 1ϵ-dependent phosphorylation of Dishevelled modulates β-catenin signaling. FEBS J 2006, 273(20):4594-4602.
  • [72]Hino S, Michiue T, Asashima M, Kikuchi A: Casein kinase Iϵ enhances the binding of Dvl-1 to Frat-1 and is essential for Wnt-3a-induced accumulation of β-catenin. J Biol Chem 2003, 278(16):14066-14073.
  • [73]Huang X, McGann JC, Liu BY, Hannoush RN, Lill JR, Pham V, Newton K, Kakunda M, Liu J, Yu C, Hymowitz SG, Hongo JA, Wynshaw-Boris A, Polakis P, Harland RM, Dixit VM: Phosphorylation of dishevelled by protein kinase RIPK4 regulates Wnt signaling. Science 2013, 339(6126):1441-1445.
  • [74]Klein TJ, Jenny A, Djiane A, Mlodzik M: CKIε/discs overgrown promotes both Wnt-Fz/β-catenin and Fz/PCP signaling in Drosophila. Curr Biol 2006, 16(13):1337-1343.
  • [75]Sun TQ, Lu B, Feng J-J, Reinhard C, Jan YN, Fantl WJ, Williams LT: PAR-1 is a Dishevelled-associated kinase and a positive regulator of Wnt signalling. Nat Cell Biol 2001, 3(7):628-636.
  • [76]Willert K, Brink M, Wodarz A, Varmus H, Nusse R: Casein kinase 2 associates with and phosphorylates Dishevelled. EMBO J 1997, 16(11):3089-3096.
  • [77]Cruciat CM, Dolde C, de Groot RE, Ohkawara B, Reinhard C, Korswagen HC, Niehrs C: RNA helicase DDX3 is a regulatory subunit of casein kinase 1 in Wnt–β-catenin signaling. Science 2013, 339(6126):1436-1441.
  • [78]Jung H, Kim BG, Han WH, Lee JH, Cho JY, Park WS, Maurice MM, Han JK, Lee MJ, Finley D, Jho EH: Deubiquitination of Dishevelled by Usp14 is required for Wnt signaling. Oncogenesis 2013, 2:e64.
  • [79]Tauriello DV, Haegebarth A, Kuper I, Edelmann MJ, Henraat M, Canninga-van Dijk MR, Kessler BM, Clevers H, Maurice MM: Loss of the tumor suppressor CYLD enhances Wnt/β-catenin signaling through K63-linked ubiquitination of Dvl. Mol Cell 2010, 37(5):607-619.
  • [80]Angers S, Thorpe CJ, Biechele TL, Goldenberg SJ, Zheng N, MacCoss MJ, Moon RT: The KLHL12-Cullin-3 ubiquitin ligase negatively regulates the Wnt-[beta]-catenin pathway by targeting Dishevelled for degradation. Nat Cell Biol 2006, 8(4):348-357.
  • [81]Wei W, Li M, Wang J, Nie F, Li L: The E3 ubiquitin ligase ITCH negatively regulates canonical Wnt signaling by targeting dishevelled protein. Mol Cell Biol 2012, 32(19):3903-3912.
  • [82]Ding Y, Zhang Y, Xu C, Tao QH, Chen YG: HECT domain-containing E3 ubiquitin ligase NEDD4L negatively regulates Wnt signaling by targeting dishevelled for proteasomal degradation. J Biol Chem 2013, 288(12):8289-8298.
  • [83]Gao C, Cao W, Bao L, Zuo W, Xie G, Cai T, Fu W, Zhang J, Wu W, Zhang X, Chen YG: Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Nat Cell Biol 2010, 12(8):781-790.
  • [84]Sharma J, Mulherkar S, Mukherjee D, Jana NR: Malin regulates Wnt signaling pathway through degradation of dishevelled2. J Biol Chem 2012, 287(9):6830-6839.
  • [85]Miyazaki K, Fujita T, Ozaki T, Kato C, Kurose Y, Sakamoto M, Kato S, Goto T, Itoyama Y, Aoki M, Nakagawara A: NEDL1, a novel ubiquitin-protein isopeptide ligase for dishevelled-1, targets mutant superoxide dismutase-1. J Biol Chem 2004, 279(12):11327-11335.
  • [86]Yost C, Torres M, Miller JR, Huang E, Kimelman D, Moon RT: The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev 1996, 10(12):1443-1454.
  • [87]Peifer M, Pai LM, Casey M: Phosphorylation of the Drosophila adherens junction protein Armadillo: roles for wingless signal and zeste-white 3 kinase. Dev Biol 1994, 166(2):543-556.
  • [88]Hino S, Tanji C, Nakayama KI, Kikuchi A: Phosphorylation of β-catenin by cyclic AMP-dependent protein kinase stabilizes β-catenin through inhibition of its ubiquitination. Mol Cell Biol 2005, 25(20):9063-9072.
  • [89]Fang D, Hawke D, Zheng Y, Xia Y, Meisenhelder J, Nika H, Mills GB, Kobayashi R, Hunter T, Lu Z: Phosphorylation of β-catenin by AKT promotes β-catenin transcriptional activity. J Biol Chem 2007, 282(15):11221-11229.
  • [90]Wu X, Tu X, Joeng KS, Hilton MJ, Williams DA, Long F: Rac1 activation controls nuclear localization of β-catenin during canonical Wnt signaling. Cell 2008, 133(2):340-353.
  • [91]Du C, Zhang C, Li Z, Biswas MH, Balaji KC: β-catenin phosphorylated at threonine 120 antagonizes generation of active β-catenin by spatial localization in trans-Golgi network. PLoS One 2012, 7(4):e33830.
  • [92]Wu G, Xu G, Schulman BA, Jeffrey PD, Harper JW, Pavletich NP: Structure of a β-TrCP1-Skp1-β-catenin complex: destruction motif binding and lysine specificity of the SCFβ-TrCP1 ubiquitin ligase. Mol Cell 2003, 11(6):1445-1456.
  • [93]Winer IS, Bommer GT, Gonik N, Fearon ER: Lysine residues Lys-19 and Lys-49 of β-catenin regulate its levels and function in T cell factor transcriptional activation and neoplastic transformation. J Biol Chem 2006, 281(36):26181-26187.
  • [94]Kitagawa M, Hatakeyama S, Shirane M, Matsumoto M, Ishida N, Hattori K, Nakamichi I, Kikuchi A, Nakayama K, Nakayama K: An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of β-catenin. EMBO J 1999, 18(9):2401-2410.
  • [95]Latres E, Chiaur DS, Pagano M: The human F box protein β-Trcp associates with the Cul1/Skp1 complex and regulates the stability of beta-catenin. Oncogene 1999, 18(4):849-854.
  • [96]Winston JT, Strack P, Beer-Romero P, Chu CY, Elledge SJ, Harper JW: The SCFβ-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in vitro. Genes Dev 1999, 13(3):270-283.
  • [97]Hay-Koren A, Caspi M, Zilberberg A, Rosin-Arbesfeld R: The EDD E3 ubiquitin ligase ubiquitinates and up-regulates β-catenin. Mol Biol Cell 2011, 22(3):399-411.
  • [98]Shekhar MP, Gerard B, Pauley RJ, Williams BO, Tait L: Rad6B is a positive regulator of β-catenin stabilization. Cancer Res 2008, 68(6):1741-1750.
  • [99]Gerard B, Sanders MA, Visscher DW, Tait L, Shekhar MP: Lysine 394 is a novel Rad6B-induced ubiquitination site on β-catenin. Biochim Biophys Acta 2012, 1823(10):1686-1696.
  • [100]Dao KH, Rotelli MD, Petersen CL, Kaech S, Nelson WD, Yates JE, Hanlon Newell AE, Olson SB, Druker BJ, Bagby GC: FANCL ubiquitinates β-catenin and enhances its nuclear function. Blood 2012, 120(2):323-334.
  • [101]Chitalia VC, Foy RL, Bachschmid MM, Zeng L, Panchenko MV, Zhou MI, Bharti A, Seldin DC, Lecker SH, Dominguez I, Cohen HT: Jade-1 inhibits Wnt signalling by ubiquitylating β-catenin and mediates Wnt pathway inhibition by pVHL. Nat Cell Biol 2008, 10(10):1208-1216.
  • [102]Wolf D, Rodova M, Miska EA, Calvet JP, Kouzarides T: Acetylation of β-catenin by CREB-binding protein (CBP). J Biol Chem 2002, 277(28):25562-25567.
  • [103]Lévy L, Wei Y, Labalette C, Wu Y, Renard CA, Buendia MA, Neuveut C: Acetylation of β-catenin by p300 regulates β-catenin-Tcf4 interaction. Mol Cell Biol 2004, 24(8):3404-3414.
  • [104]Ge X, Jin Q, Zhang F, Yan T, Zhai Q: PCAF acetylates β-catenin and improves its stability. Mol Biol Cell 2009, 20(1):419-427.
  • [105]Ishitani T, Ninomiya-Tsuji J, Matsumoto K: Regulation of lymphoid enhancer factor 1/T-cell factor by mitogen-activated protein kinase-related Nemo-like kinase-dependent phosphorylation in Wnt/β-catenin signaling. Mol Cell Biol 2003, 23(4):1379-1389.
  • [106]Ishitani T, Ninomiya-Tsuji J, Nagai S, Nishita M, Meneghini M, Barker N, Waterman M, Bowerman B, Clevers H, Shibuya H, Matsumoto K: The TAK1-NLK-MAPK-related pathway antagonizes signalling between β-catenin and transcription factor TCF. Nature 1999, 399(6738):798-802.
  • [107]Mahmoudi T, Li VSW, Ng SS, Taouatas N, Vries RGJ, Mohammed S, Heck AJ, Clevers H: The kinase TNIK is an essential activator of Wnt target genes. EMBO J 2009, 28(21):3329-3340.
  • [108]Shitashige M, Satow R, Jigami T, Aoki K, Honda K, Shibata T, Ono M, Hirohashi S, Yamada T: Traf2- and Nck-interacting kinase is essential for Wnt signaling and colorectal cancer growth. Cancer Res 2010, 70(12):5024-5033.
  • [109]Lee E, Salic A, Kirschner MW: Physiological regulation of β-catenin stability by Tcf3 and CK1∈. J Cell Biol 2001, 154(5):983-994.
  • [110]Wang S, Jones KA: CK2 controls the recruitment of Wnt regulators to target genes in vivo. Curr Biol 2006, 16(22):2239-2244.
  • [111]Hämmerlein A, Weiske J, Huber O: A second protein kinase CK1-mediated step negatively regulates Wnt signalling by disrupting the lymphocyte enhancer factor-1/β-catenin complex. Cell Mol Life Sci 2005, 62(5):606-618.
  • [112]Hikasa H, Sokol SY: Phosphorylation of TCF proteins by homeodomain-interacting protein kinase 2. J Biol Chem 2011, 286(14):12093-12100.
  • [113]Hikasa H, Ezan J, Itoh K, Li X, Klymkowsky MW, Sokol SY: Regulation of TCF3 by Wnt-dependent phosphorylation during vertebrate axis specification. Dev Cell 2010, 19(4):521-532.
  • [114]Waltzer L, Bienz M: Drosophila CBP represses the transcription factor TCF to antagonize Wingless signalling. Nature 1998, 395(6701):521-525.
  • [115]Gay F, Calvo D, Lo MC, Ceron J, Maduro M, Lin R, Shi Y: Acetylation regulates subcellular localization of the Wnt signaling nuclear effector POP-1. Genes Dev 2003, 17(6):717-722.
  • [116]Elfert S, Weise A, Bruser K, Biniossek ML, Jägle S, Senghaas N, Hecht A: Acetylation of human TCF4 (TCF7L2) proteins attenuates inhibition by the HBP1 repressor and induces a conformational change in the TCF4::DNA complex. PLoS One 2013, 8(4):e61867.
  • [117]Sachdev S, Bruhn L, Sieber H, Pichler A, Melchior F, Grosschedl R: PIASy, a nuclear matrix–associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev 2001, 15(23):3088-3103.
  • [118]Yamamoto H, Ihara M, Matsuura Y, Kikuchi A: Sumoylation is involved in β-catenin-dependent activation of Tcf-4. EMBO J 2003, 22(9):2047-2059.
  • [119]Ishitani T, Matsumoto K, Chitnis AB, Itoh M: Nrarp functions to modulate neural-crest-cell differentiation by regulating LEF1 protein stability. Nat Cell Biol 2005, 7(11):1106-1112.
  • [120]Yamada M, Ohnishi J, Ohkawara B, Iemura S, Satoh K, Hyodo-Miura J, Kawachi K, Natsume T, Shibuya H: NARF, an nemo-like kinase (NLK)-associated ring finger protein regulates the ubiquitylation and degradation of T cell factor/lymphoid enhancer factor (TCF/LEF). J Biol Chem 2006, 281(30):20749-20760.
  • [121]Cohen P: The role of protein phosphorylation in human health and disease. Eur J Biochem 2001, 268(19):5001-5010.
  • [122]Aberle H, Bauer A, Stappert J, Kispert A, Kemler R: β-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 1997, 16(13):3797-3804.
  • [123]Hart M, Concordet JP, Lassot I, Albert I, del los Santos R, Durand H, Perret C, Rubinfeld B, Margottin F, Benarous R, Polakis P: The F-box protein β-TrCP associates with phosphorylated β-catenin and regulates its activity in the cell. Curr Biol 1999, 9(4):207-211.
  • [124]Liu X, Rubin JS, Kimmel AR: Rapid, Wnt-induced changes in GSK3β associations that regulate β-catenin stabilization are mediated by Gα proteins. Curr Biol 2005, 15(22):1989-1997.
  • [125]Cselenyi CS, Jernigan KK, Tahinci E, Thorne CA, Lee LA, Lee E: LRP6 transduces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3′s phosphorylation of β-catenin. Proc Natl Acad Sci U S A 2008, 105(23):8032-8037.
  • [126]Piao S, Lee SH, Kim H, Yum S, Stamos JL, Xu Y, Lee SJ, Lee J, Oh S, Han JK, Park BJ, Weis WI, Ha NC: Direct inhibition of GSK3β by the phosphorylated cytoplasmic domain of LRP6 in Wnt/β-catenin signaling. PLoS One 2008, 3(12):e4046.
  • [127]Wu G, Huang H, Abreu JG, He X: Inhibition of GSK3 phosphorylation of β-catenin via phosphorylated PPPSPXS motifs of Wnt coreceptor LRP6. PLoS One 2009, 4(3):e4926.
  • [128]Mi K, Dolan PJ, Johnson GVW: The low density lipoprotein receptor-related protein 6 interacts with glycogen synthase kinase 3 and attenuates activity. J Biol Chem 2006, 281(8):4787-4794.
  • [129]Kishida M, Koyama S, Kishida S, Matsubara K, Nakashima S, Higano K, Takada R, Takada S, Kikuchi A: Axin prevents Wnt-3a-induced accumulation of β-catenin. Oncogene 1999, 18(4):979-985.
  • [130]Dajani R, Fraser E, Roe SM, Yeo M, Good VM, Thompson V, Dale TC, Pearl LH: Structural basis for recruitment of glycogen synthase kinase 3β to the axin–APC scaffold complex. EMBO J 2003, 22(3):494-501.
  • [131]Willert K, Shibamoto S, Nusse R: Wnt-induced dephosphorylation of Axin releases β-catenin from the Axin complex. Genes Dev 1999, 13(14):1768-1773.
  • [132]Luo W, Peterson A, Garcia BA, Coombs G, Kofahl B, Heinrich R, Shabanowitz J, Hunt DF, Yost HJ, Virshup DM: Protein phosphatase 1 regulates assembly and function of the β-catenin degradation complex. EMBO J 2007, 26(6):1511-1521.
  • [133]Strovel ET, Wu D, Sussman DJ: Protein phosphatase 2Cα dephosphorylates axin and activates LEF-1-dependent transcription. J Biol Chem 2000, 275(4):2399-2403.
  • [134]Hinoi T, Yamamoto H, Kishida M, Takada S, Kishida S, Kikuchi A: Complex formation of adenomatous polyposis coli gene product and Axin facilitates glycogen synthase kinase-3β-dependent phosphorylation of β-catenin and down-regulates β-catenin. J Biol Chem 2000, 275(44):34399-34406.
  • [135]Huang H, He X: Wnt/β-catenin signaling: new (and old) players and new insights. Curr Opin Cell Biol 2008, 20(2):119-125.
  • [136]Angers S, Moon RT: Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol 2009, 10(7):468-477.
  • [137]Tamai K, Zeng X, Liu C, Zhang X, Harada Y, Chang Z, He X: A mechanism for Wnt coreceptor activation. Mol Cell 2004, 13(1):149-156.
  • [138]Niehrs C, Shen J: Regulation of Lrp6 phosphorylation. Cell Mol Life Sci 2010, 67(15):2551-2562.
  • [139]Pan W, Choi SC, Wang H, Qin Y, Volpicelli-Daley L, Swan L, Lucast L, Khoo C, Zhang X, Li L, Abrams CS, Sokol SY, Wu D: Wnt3a-mediated formation of phosphatidylinositol 4,5-bisphosphate regulates LRP6 phosphorylation. Science 2008, 321(5894):1350-1353.
  • [140]Zeng X, Huang H, Tamai K, Zhang X, Harada Y, Yokota C, Almeida K, Wang J, Doble B, Woodgett J, Wynshaw-Boris A, Hsieh JC, He X: Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development 2008, 135(2):367-375.
  • [141]Smalley MJ, Sara E, Paterson H, Naylor S, Cook D, Jayatilake H, Fryer LG, Hutchinson L, Fry MJ, Dale TC: Interaction of Axin and Dvl-2 proteins regulates Dvl-2-stimulated TCF-dependent transcription. EMBO J 1999, 18(10):2823-2835.
  • [142]Kishida S, Yamamoto H, Hino S, Ikeda S, Kishida M, Kikuchi A: DIX domains of Dvl and axin are necessary for protein interactions and their ability to regulate β-catenin stability. Mol Cell Biol 1999, 19(6):4414-4422.
  • [143]Fiedler M, Mendoza-Topaz C, Rutherford TJ, Mieszczanek J, Bienz M: Dishevelled interacts with the DIX domain polymerization interface of Axin to interfere with its function in down-regulating β-catenin. Proc Natl Acad Sci U S A 2011, 108(5):1937-1942.
  • [144]Mao J, Wang J, Liu B, Pan W, Farr Iii GH, Flynn C, Yuan H, Takada S, Kimelman D, Li L, Wu D: Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol Cell 2001, 7(4):801-809.
  • [145]Bilić J, Huang YL, Davidson G, Zimmermann T, Cruciat CM, Bienz M, Niehrs C: Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science 2007, 316(5831):1619-1622.
  • [146]Schwarz-Romond T, Fiedler M, Shibata N, Butler PJG, Kikuchi A, Higuchi Y, Bienz M: The DIX domain of Dishevelled confers Wnt signaling by dynamic polymerization. Nat Struct Mol Biol 2007, 14(6):484-492.
  • [147]Schwarz-Romond T, Metcalfe C, Bienz M: Dynamic recruitment of axin by Dishevelled protein assemblies. J Cell Sci 2007, 120(14):2402-2412.
  • [148]Lee JS, Ishimoto A, Yanagawa S: Characterization of mouse dishevelled (Dvl) proteins in Wnt/Wingless signaling pathway. J Biol Chem 1999, 274(30):21464-21470.
  • [149]González-Sancho JM, Brennan KR, Castelo-Soccio LA, Brown AM: Wnt proteins induce dishevelled phosphorylation via an LRP5/6- independent mechanism, irrespective of their ability to stabilize β-catenin. Mol Cell Biol 2004, 24(11):4757-4768.
  • [150]Doble BW, Patel S, Wood GA, Kockeritz LK, Woodgett JR: Functional redundancy of GSK-3α and GSK-3β in Wnt/β-catenin signaling shown by using an allelic series of embryonic stem cell lines. Dev Cell 2007, 12(6):957-971.
  • [151]Cohen P, Frame S: The renaissance of GSK3. Nat Rev Mol Cell Biol 2001, 2(10):769-776.
  • [152]Frame S, Cohen P, Biondi RM: A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol Cell 2001, 7(6):1321-1327.
  • [153]Dajani R, Fraser E, Roe SM, Young N, Good V, Dale TC, Pearl LH: Crystal structure of glycogen synthase kinase 3β: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell 2001, 105(6):721-732.
  • [154]Fukumoto S, Hsieh CM, Maemura K, Layne MD, Yet SF, Lee KH, Matsui T, Rosenzweig A, Taylor WG, Rubin JS, Perrella MA, Lee ME: Akt participation in the Wnt signaling pathway through Dishevelled. J Biol Chem 2001, 276(20):17479-17483.
  • [155]Desbois-Mouthon C, Cadoret A, Blivet-Van Eggelpoël MJ, Bertrand F, Cherqui G, Perret C, Capeau J: Insulin and IGF-1 stimulate the β-catenin pathway through two signalling cascades involving GSK-3β inhibition and Ras activation. Oncogene 2001, 20(2):252-259.
  • [156]Ding VW, Chen RH, McCormick F: Differential regulation of glycogen synthase kinase 3β by insulin and Wnt signaling. J Biol Chem 2000, 275(42):32475-32481.
  • [157]McManus EJ, Sakamoto K, Armit LJ, Ronaldson L, Shpiro N, Marquez R, Alessi DR: Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis. EMBO J 2005, 24(8):1571-1583.
  • [158]Bikkavilli RK, Feigin ME, Malbon CC: p38 mitogen-activated protein kinase regulates canonical Wnt–β-catenin signaling by inactivation of GSK3β. J Cell Sci 2008, 121(21):3598-3607.
  • [159]Wu ZQ, Brabletz T, Fearon E, Willis AL, Hu CY, Li XY, Weiss SJ: Canonical Wnt suppressor, Axin2, promotes colon carcinoma oncogenic activity. Proc Natl Acad Sci U S A 2012, 109(28):11312-11317.
  • [160]Itoh K, Tang TL, Neel BG, Sokol SY: Specific modulation of ectodermal cell fates in Xenopus embryos by glycogen synthase kinase. Development 1995, 121(12):3979-3988.
  • [161]Buescher JL, Phiel CJ: A noncatalytic domain of glycogen synthase kinase-3 (GSK-3) is essential for activity. J Biol Chem 2010, 285(11):7957-7963.
  • [162]Fraser E, Young N, Dajani R, Franca-Koh J, Ryves J, Williams RSB, Yeo M, Webster MT, Richardson C, Smalley MJ, Pearl LH, Harwood A, Dale TC: Identification of the Axin and Frat binding region of glycogen synthase kinase-3. J Biol Chem 2002, 277(3):2176-2185.
  • [163]Zhang Y, Qiu WJ, Liu DX, Neo SY, He X, Lin SC: Differential molecular assemblies underlie the dual function of Axin in modulating the WNT and JNK pathways. J Biol Chem 2001, 276(34):32152-32159.
  • [164]Roose J, Molenaar M, Peterson J, Hurenkamp J, Brantjes H, Moerer P, van de Wetering M, Destree O, Clevers H: The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature 1998, 395(6702):608-612.
  • [165]Arce L, Pate K, Waterman M: Groucho binds two conserved regions of LEF-1 for HDAC-dependent repression. BMC Cancer 2009, 9(1):159. BioMed Central Full Text
  • [166]Daniels DL, Weis WI: β-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat Struct Mol Biol 2005, 12(4):364-371.
  • [167]Hsu SC, Galceran J, Grosschedl R: Modulation of transcriptional regulation by LEF-1 in response to Wnt-1 signaling and association with β-catenin. Mol Cell Biol 1998, 18(8):4807-4818.
  • [168]Hershko A, Ciechanover A: The ubiquitin system. Annu Rev Biochem 1998, 67(1):425-479.
  • [169]Pickart CM, Eddins MJ: Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 2004, 1695(1–3):55-72.
  • [170]Glickman MH, Ciechanover A: The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 2002, 82(2):373-428.
  • [171]Mukhopadhyay D, Riezman H: Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 2007, 315(5809):201-205.
  • [172]Schnell JD, Hicke L: Non-traditional functions of ubiquitin and ubiquitin-binding proteins. J Biol Chem 2003, 278(38):35857-35860.
  • [173]Chen ZJ, Sun LJ: Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 2009, 33(3):275-286.
  • [174]Komander D: The emerging complexity of protein ubiquitination. Biochem Soc Trans 2009, 37(Pt 5):937-953.
  • [175]Kulathu Y, Komander D: Atypical ubiquitylation — the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol 2012, 13(8):508-523.
  • [176]Ikeda F, Dikic I: Atypical ubiquitin chains: new molecular signals. EMBO Rep 2008, 9(6):536-542.
  • [177]Kirisako T, Kamei K, Murata S, Kato M, Fukumoto H, Kanie M, Sano S, Tokunaga F, Tanaka K, Iwai K: A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J 2006, 25(20):4877-4887.
  • [178]Tokunaga F, Sakata S-i, Saeki Y, Satomi Y, Kirisako T, Kamei K, Nakagawa T, Kato M, Murata S, Yamaoka S, Yamamoto M, Akira S, Takao T, Tanaka K, Iwai K: Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nat Cell Biol 2009, 11(2):123-132.
  • [179]Sorkin A: Regulation of endocytic trafficking of receptors and transporters by ubiquitination: possible role in neurodegenerative disease. In Intracellular traffic and neurodegenerative disorders. Edited by George-Hyslop PS, Mobley WC, Christen Y. Berlin, Heidelberg: Springer; 2009:141-155.
  • [180]Kravtsova-Ivantsiv Y, Ciechanover A: Non-canonical ubiquitin-based signals for proteasomal degradation. J Cell Sci 2012, 125(3):539-548.
  • [181]Fuchs SY, Spiegelman VS, Suresh Kumar KG: The many faces of β-TrCP E3 ubiquitin ligases: reflections in the magic mirror of cancer. Oncogene 2004, 23(11):2028-2036.
  • [182]Panchenko MV, Zhou MI, Cohen HT: von Hippel-Lindau partner Jade-1 Is a transcriptional co-activator associated with histone acetyltransferase activity. J Biol Chem 2004, 279(53):56032-56041.
  • [183]Zhou MI, Wang H, Ross JJ, Kuzmin I, Xu C, Cohen HT: The von Hippel-Lindau tumor suppressor stabilizes novel plant homeodomain protein Jade-1. J Biol Chem 2002, 277(42):39887-39898.
  • [184]Behrens J, Jerchow BA, Würtele M, Grimm J, Asbrand C, Wirtz R, Kühl M, Wedlich D, Birchmeier W: Functional interaction of an axin homolog, conductin, with β-catenin, APC, and GSK3β. Science 1998, 280(5363):596-599.
  • [185]Hart MJ, de los Santos R, Albert IN, Rubinfeld B, Polakis P: Downregulation of β-catenin by human Axin and its association with the APC tumor suppressor, β-catenin and GSK3β. Curr Biol 1998, 8(10):573-581.
  • [186]Lee E, Salic A, Krüger R, Heinrich R, Kirschner MW: The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol 2003, 1(1):e10.
  • [187]Salic A, Lee E, Mayer L, Kirschner MW: Control of β-catenin stability: reconstitution of the cytoplasmic steps of the Wnt pathway in Xenopus egg extracts. Mol Cell 2000, 5(3):523-532.
  • [188]Lui TT, Lacroix C, Ahmed SM, Goldenberg SJ, Leach CA, Daulat AM, Angers S: The ubiquitin-specific protease USP34 regulates axin stability and Wnt/β-catenin signaling. Mol Cell Biol 2011, 31(10):2053-2065.
  • [189]Petroski MD, Deshaies RJ: Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 2005, 6(1):9-20.
  • [190]Papkoff J, Rubinfeld B, Schryver B, Polakis P: Wnt-1 regulates free pools of catenins and stabilizes APC-catenin complexes. Mol Cell Biol 1996, 16(5):2128-2134.
  • [191]Gao C, Chen YG: Dishevelled: the hub of Wnt signaling. Cell Signal 2010, 22(5):717-727.
  • [192]Habas R: Canonical Wnt signaling: an unexpected new player. Dev Cell 2006, 11(2):138-139.
  • [193]Tauriello DV, Maurice MM: The various roles of ubiquitin in Wnt pathway regulation. Cell Cycle 2010, 9(18):3724-3733.
  • [194]González-Sancho JM, Greer YE, Abrahams CL, Takigawa Y, Baljinnyam B, Lee KH, Lee KS, Rubin JS, Brown AM: Functional consequences of Wnt-induced dishevelled 2 phosphorylation in canonical and noncanonical Wnt signaling. J Biol Chem 2013, 288(13):9428-9437.
  • [195]Cadigan KM, Fish MP, Rulifson EJ, Nusse R: Wingless repression of Drosophila frizzled 2 expression shapes the Wingless morphogen gradient in the wing. Cell 1998, 93(5):767-777.
  • [196]Zhang J, Li Y, Liu Q, Lu W, Bu G: Wnt signaling activation and mammary gland hyperplasia in MMTV-LRP6 transgenic mice: implication for breast cancer tumorigenesis. Oncogene 2009, 29(4):539-549.
  • [197]Haglund K, Dikic I: The role of ubiquitylation in receptor endocytosis and endosomal sorting. J Cell Sci 2012, 125(2):265-275.
  • [198]Tran H, Polakis P: Reversible modification of adenomatous polyposis coli (APC) with K63-linked polyubiquitin regulates the assembly and activity of the β-catenin destruction complex. J Biol Chem 2012, 287(34):28552-28563.
  • [199]Bignell GR, Warren W, Seal S, Takahashi M, Rapley E, Barfoot R, Green H, Brown C, Biggs PJ, Lakhani SR, Jones C, Hansen J, Blair E, Hofmann B, Siebert R, Turner G, Evans DG, Schrander-Stumpel C, Beemer FA, van Den Ouweland A, Halley D, Delpech B, Cleveland MG, Leigh I, Leisti J, Rasmussen S: Identification of the familial cylindromatosis tumour-suppressor gene. Nat Genet 2000, 25(2):160-165.
  • [200]Jürgen Dohmen R: SUMO protein modification. Biochim Biophys Acta 2004, 1695(1–3):113-131.
  • [201]Gareau JR, Lima CD: The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 2010, 11(12):861-871.
  • [202]Yeh ETH: SUMOylation and De-SUMOylation: wrestling with life’s processes. J Biol Chem 2009, 284(13):8223-8227.
  • [203]Matunis MJ, Coutavas E, Blobel G: A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol 1996, 135(6):1457-1470.
  • [204]Kerscher O: SUMO junction-what’s your function? New insights through SUMO-interacting motifs. EMBO Rep 2007, 8(6):550-555.
  • [205]Johnson ES: Protein modification by SUMO. Annu Rev Biochem 2004, 73(1):355-382.
  • [206]Kadoya T, Kishida S, Fukui A, Hinoi T, Michiue T, Asashima M, Kikuchi A: Inhibition of Wnt signaling pathway by a novel axin-binding protein. J Biol Chem 2000, 275(47):37030-37037.
  • [207]Kadoya T, Yamamoto H, Suzuki T, Yukita A, Fukui A, Michiue T, Asahara T, Tanaka K, Asashima M, Kikuchi A: Desumoylation activity of Axam, a novel Axin-binding protein, is involved in downregulation of β-catenin. Mol Cell Biol 2002, 22(11):3803-3819.
  • [208]Kim MJ, Chia IV, Costantini F: SUMOylation target sites at the C terminus protect Axin from ubiquitination and confer protein stability. FASEB J 2008, 22(11):3785-3794.
  • [209]Li J, Wang CY: TBL1-TBLR1 and β-catenin recruit each other to Wnt target-gene promoter for transcription activation and oncogenesis. Nat Cell Biol 2008, 10(2):160-169.
  • [210]Choi HK, Choi KC, Yoo JY, Song M, Ko Suk J, Kim Chul H, Ahn JH, Chun KH, Yook Jong I, Yoon HG: Reversible SUMOylation of TBL1-TBLR1 regulates β-catenin-mediated Wnt signaling. Mol Cell 2011, 43(2):203-216.
  • [211]Li M, Brooks CL, Wu-Baer F, Chen D, Baer R, Gu W: Mono- Versus polyubiquitination: differential control of p53 fate by Mdm2. Science 2003, 302(5652):1972-1975.
  • [212]Yurchenko V, Xue Z, Sadofsky MJ: SUMO modification of human XRCC4 regulates its localization and function in DNA double-strand break repair. Mol Cell Biol 2006, 26(5):1786-1794.
  • [213]Huang J, Yan J, Zhang J, Zhu S, Wang Y, Shi T, Zhu C, Chen C, Liu X, Cheng J, Mustelin T, Feng GS, Chen G, Yu J: SUMO1 modification of PTEN regulates tumorigenesis by controlling its association with the plasma membrane. Nat Commun 2012, 3:911.
  • [214]Kubota Y, O’Grady P, Saito H, Takekawa M: Oncogenic Ras abrogates MEK SUMOylation that suppresses the ERK pathway and cell transformation. Nat Cell Biol 2011, 13(3):282-291.
  • [215]Carter S, Vousden KH: p53-Ubl fusions as models of ubiquitination, sumoylation and neddylation of p53. Cell Cycle 2008, 7(16):2519-2528.
  • [216]Lundby A, Lage K, Weinert Brian T, Bekker-Jensen Dorte B, Secher A, Skovgaard T, Kelstrup Christian D, Dmytriyev A, Choudhary C, Lundby C, Olsen JV: Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns. Cell Rep 2012, 2(2):419-431.
  • [217]Yang XJ: The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res 2004, 32(3):959-976.
  • [218]Guan KL, Xiong Y: Regulation of intermediary metabolism by protein acetylation. Trends Biochem Sci 2011, 36(2):108-116.
  • [219]Sterner DE, Berger SL: Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 2000, 64(2):435-459.
  • [220]Struhl K: Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 1998, 12(5):599-606.
  • [221]Strahl BD, Allis CD: The language of covalent histone modifications. Nature 2000, 403(6765):41-45.
  • [222]Spange S, Wagner T, Heinzel T, Krämer OH: Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol 2009, 41(1):185-198.
  • [223]Glozak MA, Sengupta N, Zhang X, Seto E: Acetylation and deacetylation of non-histone proteins. Gene 2005, 363:15-23.
  • [224]Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M: Lysine Acetylation targets protein complexes and co-regulates major cellular functions. Science 2009, 325(5942):834-840.
  • [225]Firestein R, Blander G, Michan S, Oberdoerffer P, Ogino S, Campbell J, Bhimavarapu A, Luikenhuis S, de Cabo R, Fuchs C, Hahn WC, Guarente LP, Sinclair DA: The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS One 2008, 3(4):e2020.
  • [226]Kim MY, Zhang T, Kraus WL: Poly(ADP-ribosyl)ation by PARP-1: ‘PAR-laying’ NAD+into a nuclear signal. Genes Dev 2005, 19(17):1951-1967.
  • [227]Hassa PO, Haenni SS, Elser M, Hottiger MO: Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev 2006, 70(3):789-829.
  • [228]Schreiber V, Dantzer F, Ame JC, de Murcia G: Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 2006, 7(7):517-528.
  • [229]James RG, Davidson KC, Bosch KA, Biechele TL, Robin NC, Taylor RJ, Major MB, Camp ND, Fowler K, Martins TJ, Moon RT: WIKI4, a novel inhibitor of tankyrase and Wnt/β-catenin signaling. PLoS One 2012, 7(12):e50457.
  • [230]Hunter T: The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol Cell 2007, 28(5):730-738.
  • [231]Yang XJ, Seto E: Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell 2008, 31(4):449-461.
  • [232]Guo Z, Kanjanapangka J, Liu N, Liu S, Liu C, Wu Z, Wang Y, Loh T, Kowolik C, Jamsen J, Zhou M, Truong K, Chen Y, Zheng L, Shen B: Sequential posttranslational modifications program FEN1 degradation during cell-cycle progression. Mol Cell 2012, 47(3):444-456.
  • [233]Murr R: Interplay between different epigenetic modifications and mechanisms. In Advances in Genetics, Volume 70. Edited by Zdenko H, Toshikazu U. Waltham, Massachusetts: Academic Press; 2010:101-141.
  • [234]Wang Z, Michaud GA, Cheng Z, Zhang Y, Hinds TR, Fan E, Cong F, Xu W: Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ation-dependent ubiquitination. Genes Dev 2012, 26(3):235-240.
  • [235]Kang HC, Lee YI, Shin JH, Andrabi SA, Chi Z, Gagné JP, Lee Y, Ko HS, Lee BD, Poirier GG, Dawson VL, Dawson TM: Iduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates DNA damage. Proc Natl Acad Sci U S A 2011, 108(34):14103-14108.
  • [236]Nusse R, Varmus H: Three decades of Wnts: a personal perspective on how a scientific field developed. EMBO J 2012, 31(12):2670-2684.
  • [237]Anastas JN, Moon RT: WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 2013, 13(1):11-26.
  • [238]Polakis P: Drugging Wnt signalling in cancer. EMBO J 2012, 31(12):2737-2746.
  文献评价指标  
  下载次数:35次 浏览次数:47次