期刊论文详细信息
Journal of Neuroinflammation
Cerebrospinal fluid levels of inflammation, oxidative stress and NAD+ are linked to differences in plasma carotenoid concentrations
Ayse Bilgin5  Kevin D Croft1  Trevor A Mori1  Manohar Garg2  Ross Grant3  Jade Guest4 
[1] School of Medicine and Pharmacology, Royal Perth Hospital Unit, University of Western Australia, Perth, WA, Australia;School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia;Sydney Medical School, University of Sydney, Sydney, NSW, Australia;School of Medical Sciences, Faculty of Medicine, University of New South Wales, Wallace Wurth Building, office #203, Sydney, NSW 2052, Australia;Faculty of Science, Macquarie University, Sydney, NSW, Australia
关键词: Oxidative stress;    NAD+;    Inflammation;    Carotenoid;    Brain;   
Others  :  1151574
DOI  :  10.1186/1742-2094-11-117
 received in 2013-12-18, accepted in 2014-05-27,  发布年份 2014
PDF
【 摘 要 】

Background

The consumption of foods rich in carotenoids that possess significant antioxidant and inflammatory modulating properties has been linked to reduced risk of neuropathology. The objective of this study was to evaluate the relationship between plasma carotenoid concentrations and plasma and cerebrospinal fluid (CSF) markers of inflammation, oxidative stress and nicotinamide adenine dinucleotide (NAD+) in an essentially healthy human cohort.

Methods

Thirty-eight matched CSF and plasma samples were collected from consenting participants who required a spinal tap for the administration of anaesthetic. Plasma concentrations of carotenoids and both plasma and cerebrospinal fluid (CSF) levels of NAD(H) and markers of inflammation (IL-6, TNF-α) and oxidative stress (F2-isoprostanes, 8-OHdG and total antioxidant capacity) were quantified.

Results

The average age of participants was 53 years (SD = 20, interquartile range = 38). Both α-carotene (P = 0.01) and β-carotene (P < 0.001) correlated positively with plasma total antioxidant capacity. A positive correlation was observed between α-carotene and CSF TNF-α levels (P = 0.02). β-cryptoxanthin (P = 0.04) and lycopene (P = 0.02) inversely correlated with CSF and plasma IL-6 respectively. A positive correlation was also observed between lycopene and both plasma (P < 0.001) and CSF (P < 0.01) [NAD(H)]. Surprisingly no statistically significant associations were found between the most abundant carotenoids, lutein and zeaxanthin and either plasma or CSF markers of oxidative stress.

Conclusion

Together these findings suggest that consumption of carotenoids may modulate inflammation and enhance antioxidant defences within both the central nervous system (CNS) and systemic circulation. Increased levels of lycopene also appear to moderate decline in the essential pyridine nucleotide [NAD(H)] in both the plasma and the CSF.

【 授权许可】

   
2014 Guest et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150406085718397.pdf 730KB PDF download
Figure 5. 86KB Image download
Figure 4. 66KB Image download
Figure 3. 45KB Image download
Figure 2. 62KB Image download
Figure 1. 58KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH: Mechanisms underlying inflammation in neurodegeneration. Cell 2010, 140:918-934.
  • [2]Lin MT, Beal MF: Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006, 443:787-795.
  • [3]Rawdin BJ, Mellon SH, Dhabhar FS, Epel ES, Puterman E, Su Y, Burke HM, Reus R, Rosser R, Hamilton SP, Nelson JC, Wolkowitz OM: Dysregulated relationship of inflammation and oxidative stress in major depression. Brain Behav Immun 2013, 31:143-152.
  • [4]Il’yasova D, Ivanova A, Morrow JD, Cesari M, Pahor M: Correlation between two markers of inflammation, serum C-reactive protein and interleukin 6, and indices of oxidative stress in patients with high risk of cardiovascular disease. Biomarkers 2008, 13:41-51.
  • [5]Furney SJ, Kronenberg D, Simmons A, Güntert A, Dobson RJ, Proitsi P: Combinatorial markers of mild cognitive impairment conversion to Alzheimers disease - cytokines and MRI measures together predict disease progression. J Alzheimers Dis 2011, 26(Suppl 3):395-405.
  • [6]Collins LM, Toulouse A, Connor TJ, Nolan YM: Contributions of central and systemic inflammation to the pathophysiology of Parkinson’s disease. Neuropharmacology 2012, 62:2154-2168.
  • [7]Evans MC, Couch Y, Sibson N, Turner MR: Inflammation and neurovascular changes in amyotrophic lateral sclerosis. Mol Cell Neurosci 2013, 53:3-41.
  • [8]Sudduth TL, Schmitt FA, Nelson PT, Wilcock DM: Neuroinflammatory phenotype in early Alzheimer’s disease. Neurobiol Aging 2013, 34:1051-1059.
  • [9]Boissonneault V, Filali M, Lessard M, Relton J, Wong G, Rivest S: Powerful beneficial effects of macrophage colony-stimulating factor on β-amyloid deposition and cognitive impairment in Alzheimer’s disease. Brain 2009, 132:1078-1092.
  • [10]Forloni G, Mangiarotti F, Angeretti N, Lucca E, De Simoni MG: β-amyloid fragment potentiates IL-6 and TNF-α secretion by LPS in astrocytes but not in microglia. Cytokine 1997, 9:759-762.
  • [11]Wood JA, Wood PL, Ryan R, Graff-Radford NR, Pilapil C, Robitaille Y, Quirion R: Cytokine indices in Alzheimer’s temporal cortex: no changes in mature IL-1 beta or IL-1 RA but increases in the associated acute phase proteins IL-6, alphy-2-macroglobulin and C-reactive protein. Brain Res 1993, 629:245-252.
  • [12]Morimoto K, Horio J, Satoh H, Sue L, Beach T, Arita S, Tooyama I, Konishi Y: Expression profiles of cytokines in the brains of Alzheimer’s disease (AD) patients compared to the brains of non-demented patients with and without increasing AD pathology. J Alzheimers Dis 2011, 25:59-76.
  • [13]Talley AK, Dewhurst S, Perry SW, Dollard SC, Gummuluru S, Fine SM, New D, Epstein LG, Gendelman HE, Gelbard HA: Tumor necrosis factor alpha-induced apoptosis in human neuronal cells: protection by the antioxidant N-acetylcysteine and the genes bcl-2 and crmA. Mol Cell Biol 1995, 15:2359-2366.
  • [14]Quintanilla RA, Orellana DI, González-Billault C, Maccioni RB: Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway. Exp Cell Res 2004, 295:245-257.
  • [15]Barger S, Horster D, Furukawa K, Goodman Y, Krieglstein J, Mattson M: Tumor necrosis factors alpha and beta protect against APP toxicity: evidence for involvement of a kB-binding factor and attenuation of peroxide and Ca21 accumulation. Proc Natl Acad Sci U S A 1995, 92:9328-9332.
  • [16]Liu Z, Qiu YH, Li B, Ma SH, Peng YP: Neuroprotection of interleukin-6 against NMDA-induced apoptosis and its signal-transduction mechanisms. Neurotox Res 2011, 19:484-495.
  • [17]Vitkovic L, Bockaert J, Jacque C: ‘Inflammatory’ cytokines: neuromodulators in normal brain? J Neurochem 2000, 74:457-471.
  • [18]Raison CL, Borisov AS, Woolwine BJ, Massung B, Vogt G, Miller AH: Interferon-α effects on diurnal hypothalamic-pituitary-adrenal axis activity: relationship with proinflammatory cytokines and behaviour. Mol Psychiatr 2010, 15:535-547.
  • [19]Shoham S, Davenne D, Cady AB, Dinarello CA, Krueger JM: Recombinant tumor necrosis factor and interleukin 1 enhance slow-wave sleep. Am J Physiol 1987, 253:R142-R149.
  • [20]Stellwagen D, Malenka RC: Synaptic scaling mediated by glial TNF-[alpha]. Nature 2006, 440:1054-1059.
  • [21]Eder J: Tumour necrosis factor alpha and interleukin 1 signalling: do MAPKK kinases connect it all? Trends Pharmacol Sci 1997, 8:319-322.
  • [22]McCoy M, Tansey MG: TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation 2008, 5:45.
  • [23]Satoh T, Nakamura S, Taga T, Matsuda T, Hirano T, Kishimoto T, Kaziro Y: Induction of neuronal differentiation in PCI2 cells by B-cell stimulatory factor 2/interleukin 6. Mol Cell Biol 1998, 8:3546-3549.
  • [24]Biber K, Pinto-Duarte A, Wittendorp MC, Dolga AM, Fernandes CC, Von Frijtag Drabbe Künzel J, Keijser JN, de Vries R, Ijzerman AP, Ribeiro JA, Eisel U, Sebastião AM, Boddeke HWGM: Interleukin-6 upregulates neuronal adenosine a1 receptors: implications for neuromodulation and neuroprotection. Neuropsychopharmacol 2008, 33:2237-2250.
  • [25]Wassmann S, Stumpf M, Strehlow K, Schmid A, Schieffer B, Böhm M, Nickenig G: Interleukin-6 induces oxidative stress and endothelial dysfunction by overexpression of the angiotensin II type 1 receptor. Circ Res 2004, 94:534-541.
  • [26]Petit-Frère C, Clingen PH, Grewe M, Krutmann J, Roza L, Arlett CF, Green MHL: Induction of interleukin-6 production by ultraviolet radiation in normal human epidermal keratinocytes and in a human keratinocyte cell line is mediated by DNA damage. J Invest Dermatol 1998, 111:354-359.
  • [27]Suematsu N, Tsutsui H, Wen J, Kang D, Ikeuchi M, Ide T, Hayashidani S, Shiomi T, Kubota T, Hamasaki N, Takeshita A: Oxidative stress mediates tumor necrosis factor-alpha-induced mitochondrial DNA damage and dysfunction in cardiac myocytes. Circulation 2003, 107:1418-1423.
  • [28]Halliwell B: Oxidative stress and neurodegeneration: where are we now? J Neurochem 2006, 97:1634-1658.
  • [29]Sies H: Introductory remarks. In Oxidative Stress. London: Academic; 1985:1-8.
  • [30]Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, Jones PK, Ghanbari H, Wataya T, Shimohama S, Chiba S, Atwood CS, Petersen RB, Smith MA: Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 2001, 60:759-767.
  • [31]Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD: Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 1989, 52:381-389.
  • [32]Rothstein JD: Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol 2009, 65(Suppl 1):3-9.
  • [33]Sun F, Gobbel G, Li W, Chen J: Molecular mechanisms of DNA damage and repair in ischemic neuronal injury. Mech Ageing Dev 2012, 133:186-194.
  • [34]Alano CC, Garnier P, Ying W, Higashi Y, Kauppinen TM, Swanson RA: NAD+ depletion is necessary and sufficient for poly(adp-ribose) polymerase-1-mediated neuronal death. J Neuro 2010, 30:2967-2978.
  • [35]Evans DA, Funkenstein HH, Albert MS, Scherr PA, Cook NR, Chown MJ, Hebert LE, Hennekens CH, Taylor JO: Prevalence of Alzheimer’s disease in a community population of older persons. Higher than previously reported. JAMA 1989, 262:2551-2556.
  • [36]Moghal S, Rajput AH, D’Arcy C, Rajput R: Prevalence of movement disorders in elderly community residents. Neuroepidemiology 1994, 3:175-178.
  • [37]Johnson EJ, Vishwanathan R, Scott TM, Schalch W, Wittwer J, Hausman DB, Davey A, Johnson MA, Green RC, Gearing M, Poon LW: Serum carotenoids as a biomarker for carotenoid concentrations in the brain. FASEB 2011, 25:s344.2.
  • [38]Qu M, Chen C, Li M, Peo L, Chu F, Yang J, Yu Z, Wang D, Zhou Z: Protective effects of lycopene against amyloid β-induced neurotoxicity in cultured rat cortical neurons. Neurosci Lett 2011, 505:286-290.
  • [39]Warsama Jama J, Launer LJ, Witteman JCM, Den Breeijen JH, Breteler MMB, Grobbee DE, Hofman A: Dietary antioxidants and cognitive function in a population-based sample of older persons: the Rotterdam study. Am J Epidemiol 1996, 144:275-280.
  • [40]Johnson EJ, Vishwanathan R, Johnson MA, Hausman DB, Davey A, Scott TM, Green RC, Miller LS, Gearing M, Woodard J, Nelson PT, Chung HY, Schalch W, Wittwer J, Poon LW: Relationship between serum and brain carotenoids, α-tocopherol, and retinol concentrations and cognitive performance in the oldest old from the Georgia centenarian study. J Aging Res 2013. article ID 951786
  • [41]Akbaraly NT, Faure H, Gourlet V, Favier A, Berr C: Plasma carotenoid levels and cognitive performance in an elderly population: results of the EVA Study. J Gerontol Biol 2007, 62:308-316.
  • [42]Kiko T, Nakagawa K, Tsuduki T, Suzuki T, Arai H, Miyazawa T: Significance of lutein in red blood cells of Alzheimer’s disease patients. J Alzheimers Dis 2012, 28:593-600.
  • [43]Nakagawa K, Kiko T, Hatade K, Sookwong P, Arai H, Miyazawa T: Antioxidant effect of lutein towards phospholipid hydroperoxidation in human erythrocytes. British J Nutr 2009, 102:1280-1284.
  • [44]Guest J, Garg M, Bilgin A, Grant R: Relationship between central and peripheral fatty acids in humans. Lipids Health Dis 2013, 12:79-87.
  • [45]Bernofsky C, Swan M: An improved cycling assay for nicotinamide adenine dinucleotide. Anal Biochem 1973, 53:452-458.
  • [46]Grant RS, Kapoor V: Murine glial cells regenerate NAD+, after peroxide induced depletion, using either nicotinic acid, nicotinamide, or quinolinic acid as substrates. J Neurochem 1998, 70:1759-1763.
  • [47]Massudi H, Grant R, Braidy N, Guest J, Farnsworth B, Grant R: Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS One 2012, 7:e42357.
  • [48]Mori TA, Croft KD, Puddey IB, Beilin LJ: An improved method for the measurement of urinary and plasma F2-isoprostanes using gas chromatography-mass spectrometry. Anal Biochem 1999, 268:117-125.
  • [49]Barden AE, Corcoran TB, Mas E, Durand T, Galano J-M, Roberts LJ II, Paech M, Muchatuta NA, Phillips M, Mori TA: Is there a role for isofurans and neuroprostanes in pre-eclampsia and normal pregnancy? Antioxid Redox Signal 2012, 16:165-169.
  • [50]Barua AB, Kostic D, Olsen J: New simplified procedures for the extraction and simultaneous high performance liquid chromatographic analysis of retinol, tocopherols and carotenoids in human serum. J Chrom 1993, 617:257-264.
  • [51]Burrows TL, Warren JM, Colyvas K, Garg ML, Collins CE: Validation of overweight children’s fruit and vegetable intake using plasma carotenoids. Obesity 2009, 17:162-168.
  • [52]Ghashut RA, McMillan DC, Kinsella J, Duncan A, Talwar D: Quantitative data on the magnitude of the systemic inflammatory response and its effect on carotenoids status based on plasma measurements. ESPEN Jin press
  • [53]Kim GY, Kim JH, Ahn SC, Lee HJ, Moon DO, Lee CM, Park YM: Lycopene suppresses the lipopolysaccharide-induced phenotypic and functional maturation of murine dendritic cells through inhibition of mitogen-activated protein kinases and nuclear factor-kappa&UF062. Immunology 2004, 113:203-211.
  • [54]Armoza A, Haim Y, Basiri A, Wolak T, Paran E: Tomato extract and the carotenoids lycopene and lutein improve endothelial function and attenuate inflammatory NF-κβ signaling in endothelial cells. J Hypertens 2012, 31:521-529.
  • [55]Bai SK, Lee SJ, Na HJ, Ha KS, Han JA, Lee H, Kwon YG, Chung CK, Kim YM: β-carotene inhibits inflammatory gene expression in lipopolysaccharide-stimulated macrophages by suppressing redox-based NF-κβ activation. Exp Mol Med 2005, 37:323-334.
  • [56]Kim JH, Na HJ, Kim CK, Kim JY, Ha KS, Lee H, Chung HT, Kwon HJ, Kwon YG, Kim YM: The non-provitamin A carotenoid, lutein, inhibits NF-kappaβ-dependent gene expression through redox-based regulation of the phosphatidylinositol 3-kinase/PTEN/Akt and NF-kappaβ-inducing kinase pathways: role of H2O2 in NF-kappaβ activation. Free Radic Biol Med 2008, 45:885-896.
  • [57]Sies H: Total antioxidant capacity: appraisal of a concept. J Nutr 2007, 137:1493-1495.
  • [58]Moreno JM, Leets I, Puche RJ, Salazar AM, Papale JF, Alvarado G, Garcia-Casal MN: Low dose β-carotene supplementation diminishes oxidative stress in type 2 diabetics and healthy individuals. J Pharm Nutr Sci 2013, 3:206-214.
  • [59]Hughes KJ, Mayne ST, Blumberg JB, Ribaya-Mercado JD, Johnson EJ, Cartmel B: Plasma carotenoids and biomarkers of oxidative stress in patients with prior head and neck cancer. Biomark Insights 2009, 4:17-26.
  • [60]Hininger IA, Meyer-Wenger A, Moser U, Wright A, Southon S, Thurnham D, Chopra M, Van Den Berg H, Olmedilla B, Favier AE, Roussel AM: No significant effects of lutein, lycopene or β-carotene supplementation on biological markers of oxidative stress and LDL oxidizability in healthy adult subjects. J Am Coll Nutr 2001, 20:232-238.
  • [61]van den Berg R, van Vliet T, Brorkmans WMR, Cnubben NH, Vaes WH, Roza L, Haenen GR, Bast A, van den Berg H: A vegetable/fruit concentrate with high antioxidant capacity has no effect on biomarkers of antioxidant status in male smokers. J Nutr 2001, 131:1722-1747.
  • [62]Unno K, Sugiura M, Ogawa K, Takabayashi F, Toda M, Sakuma M: β-Cryptoxanthin, plentiful in Japanese mandarin orange, prevents age-related cognitive dysfunction and oxidative damage in senescence- accelerated mouse brain. Biol Pharm Bull 2011, 34:311-317.
  • [63]Nishigaki M, Yamamoto T, Ichioka H, Honjo KI, Yamamoto K, Oseko F, Kita M, Mazda O, Kanamura N: β-cryptoxanthin regulates bone reabsorption related-cytokine production in human periodontal ligament cells. Arch Oral Biol 2013, 58:880-886.
  • [64]Katsuura S, Imamura T, Bando N, Yamanishi R: β-Carotene and β-cryptoxanthin but not lutein evoke redox and immune changes in RAW264 murine macrophages. Mol Nutr Food Res 2009, 53:1396-1405.
  • [65]Kim YH, Koh HK, Kim DS: Down-regulation of IL-6 production by astaxanthin via ERK-, MSK-, and NF-κβ-mediated signals in activated microglia. Int Immunopharmacol 2010, 10:1560-1572.
  • [66]Hughs DA, Wright AJA, Finglas PM, Peerless ACJ, Bailey AL, Astley SB, Pinder AC, Southon S: The effect of β-carotene supplementation on the immune function of blood monocytes from healthy male nonsmokers. J Lab Clin Med 1997, 129:309-317.
  • [67]Yeh S-L, Wang H-M, Chen P-Y, Wu T-Z: Interactions of β-carotene and flavonoids on the secretion of pro-inflammatory mediators in an in vitro system. Chem-Biol Interact 2009, 179:386-393.
  • [68]Tarkowski E, Blennoe K, Wallin A, Tarkowski A: Intracerebral production of tumor necrosis factor-α local neuroprotective agent, in Alzheimer disease and vascular dementia. J Clin Immunol 1999, 19:223-230.
  • [69]Tarkowski E, Tullberg M, Fredman P, Wikkelso C: Correlation between intrathecal sulfatide and TNF-α levels in patients with vascular dementia. Geriatr Cogn Disord 2003, 15:207-211.
  • [70]Tang R-B, Lee B-H, Chung R-L, Chen S-J, Wong T-T: Interleukin-1β and tumor necrosis factor-α in cerebrospinal fluid of children with bacterial meningitis. Child Nerv Sys 2001, 17:453-456.
  • [71]Kwon KY, Jeon B-C: Cytokine levels in cerebrospinal fluid and delayed ischemic deficits in patients with aneurysmal subarachnoid haemorrhage. J Korean Med Sci 2001, 16:774-780.
  • [72]Perry SW, Dewhurst S, Bellizzi MJ, Gelbard HA: Tumor necrosis factor-alpha in normal and diseased brain: conflicting effects via intraneuronal receptor crosstalk? J NeuroVirol 2002, 8:611-624.
  • [73]Di Mascio P, Kaiser S, Sies H: Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys 1989, 274:532-538.
  • [74]Ismail MF, Mohamed HM: Modulatory effect of lycopene on deltamethrin-induced testicular injury in rats. Cell Biochem Biophys 2013, 65:425-432.
  • [75]Chung J, Koo K, Lian F, Hu KQ, Ernst H, Wang XD: Apo-10′-lycopenoic acid, a lycopene metabolite, increases sirtuin 1 mRNA and protein levels and decreases hepatic fat accumulation in ob/ob mice. J Nutr 2012, 142:405-410.
  • [76]D’Amours D, Desnoyers S, D’Silva I, Poirier GG: Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 1999, 342:249-268.
  • [77]Zhao X, Allison D, Condon B, Zhang F, Gheyi T, Zhang A, Ashok S, Russell M, MacEwan I, Qian Y, Jamison JA, Luz JG: The 2.5 Å crystal structure of the SIRT1 catalytic domain bound to nicotinamide adenine dinucleotide (NAD+) and an indole (EX527 analogue) reveals a novel mechanism of histone deacetylase inhibition. J Med Chem 2013, 56:963-969.
  • [78]Szarkowska L, Erecinska M: Energy-linked reduction of the mitochondrial nicotinamide-adenine. Acta Biochim Pol 1965, 2:179-186.
  • [79]Finkel T, Deng CX, Mostoslavsky R: Recent progress in the biology and physiology of sirtuins. Nature 2009, 460:587-591.
  • [80]Liang F, Kume S, Koya D: SIRT1 and insulin resistance. Nat Rev Endocrinol 2009, 5:367-373.
  • [81]Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P: Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 2009, 324:654-657.
  • [82]Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B, Hong HK, Chong JL, Buhr ED, Lee C, Takahashi JS, Imai S, Bass J: Circadian clock feedback cycle through NAMPT mediated NAD+ biosynthesis. Science 2009, 324:651-654.
  • [83]Schreiber V, Dantzer F, Ame JC, de Murcia G: Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 2006, 7:517-528.
  • [84]Deleglise B, Lassus B, Soubeyre V, Alleaume-Butaux A, Hjorth JJ, Vignes M, Schneider B, Brugg B, Viovy J-L, Peyrin J-M: Synapto-protective drugs evaluation in reconstructed neuronal network. PLoS One 2013, 8:e71103.
  • [85]Won SJ, Choi BY, Yoo BH, Sohn M, Ying W, Swanson RA, Suh SW: Prevention of traumatic brain injury-induced neuron death by intranasal delivery of nicotinamide adenine dinucleotide. J Neurotrauma 2012, 29:1401-1409.
  • [86]Guest J, Grant R, Mori TA, Croft KD: Changes in oxidative damage, inflammation and [NAD(H)] with age in cerebrospinal fluid. PLoS One 2014, 9:e85335.
  文献评价指标  
  下载次数:7次 浏览次数:4次