| Clinical Proteomics | |
| Host response profile of human brain proteome in toxoplasma encephalitis co-infected with HIV | |
| Susarla Krishna Shankar9  Thottethodi Subrahmanya Keshava Prasad4  Akhilesh Pandey3  Anita Mahadevan9  Parthasarathy Satishchandra2  Harsha Gowda1,10  Kanchan K Mukherjee1,11  Anand Srinivasan5  Abhijith K Anil7  Gourav Dey8  Vinuth N Puttamallesh1,10  Soujanya D Yelamanchi6  Anil K Madugundu1  Lakshmi Dhevi N Selvan4  Sreelakshmi K Sreenivasamurthy8  Satwant Kumar1,10  Apeksha Sahu1  | |
| [1] Bioinformatics Centre, School of Life Sciences, Pondicherry University, Puducherry 605014, India;Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India;The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;Amrita School of Biotechnology, Amrita University, Kollam 690525, India;Department of Pharmacology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India;School of Biotechnology, KIIT University, Bhubaneswar 751024, India;Armed Forces Medical College, Pune 411040, India;Manipal University, Madhav Nagar, Manipal 576104, India;Human Brain Tissue Repository, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore 560029, India;Institute of Bioinformatics, International Technology Park, Bangalore 560066, India;Department of Neurosurgery, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India | |
| 关键词: LTQ-Orbitrap Velos; Immunosuppression; Chronic meningitis; Opportunistic infections; Neuroinfections; iTRAQ labeling; | |
| Others : 1092813 DOI : 10.1186/1559-0275-11-39 |
|
| received in 2014-02-05, accepted in 2014-09-02, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
Toxoplasma encephalitis is caused by the opportunistic protozoan parasite Toxoplasma gondii. Primary infection with T. gondii in immunocompetent individuals remains largely asymptomatic. In contrast, in immunocompromised individuals, reactivation of the parasite results in severe complications and mortality. Molecular changes at the protein level in the host central nervous system and proteins associated with pathogenesis of toxoplasma encephalitis are largely unexplored. We used a global quantitative proteomic strategy to identify differentially regulated proteins and affected molecular networks in the human host during T. gondii infection with HIV co-infection.
Results
We identified 3,496 proteins out of which 607 proteins were differentially expressed (≥1.5-fold) when frontal lobe of the brain from patients diagnosed with toxoplasma encephalitis was compared to control brain tissues. We validated differential expression of 3 proteins through immunohistochemistry, which was confirmed to be consistent with mass spectrometry analysis. Pathway analysis of differentially expressed proteins indicated deregulation of several pathways involved in antigen processing, immune response, neuronal growth, neurotransmitter transport and energy metabolism.
Conclusions
Global quantitative proteomic approach adopted in this study generated a comparative proteome profile of brain tissues from toxoplasma encephalitis patients co-infected with HIV. Differentially expressed proteins include previously reported and several new proteins in the context of T. gondii and HIV infection, which can be further investigated. Molecular pathways identified to be associated with the disease should enhance our understanding of pathogenesis in toxoplasma encephalitis.
【 授权许可】
2014 Sahu et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150130152926311.pdf | 2482KB | ||
| Figure 4. | 290KB | Image | |
| Figure 3. | 129KB | Image | |
| Figure 2. | 78KB | Image | |
| Figure 1. | 69KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Tan IL, Smith BR, von Geldern G, Mateen FJ, McArthur JC: HIV-associated opportunistic infections of the CNS. Lancet Neurol 2012, 11:605-617.
- [2]Hakko E, Ozkan HA, Karaman K, Gulbas Z: Analysis of cerebral toxoplasmosis in a series of 170 allogeneic hematopoietic stem cell transplant patients. Transpl Infect Dis 2013, 15:575-580.
- [3]Mittal V, Ichhpujani RL: Toxoplasmosis - an update. Trop Parasitol 2011, 1:9-14.
- [4]Kumar GG, Mahadevan A, Guruprasad AS, Kovoor JM, Satishchandra P, Nath A, Ranga U, Shankar SK: Eccentric target sign in cerebral toxoplasmosis: neuropathological correlate to the imaging feature. J Magn Reson Imaging 2010, 31:1469-1472.
- [5]Bhattacharyya S, Khurana S, Dubey ML: Anti-Toxoplasma gondii antibody detection in serum and urine samples by enzyme-linked immunosorbent assay in HIV-infected patients. Indian J Pathol Microbiol 2013, 56:20-23.
- [6]Cao L, Cheng R, Yao L, Yuan S, Yao X: Establishment and application of a loop-mediated isothermal amplification method for simple, specific, sensitive, and rapid detection of toxoplasma gondii. J Vet Med Sci 2013, 76:9-14.
- [7]Montoya JG, Liesenfeld O: Toxoplasmosis. Lancet 2004, 363:1965-1976.
- [8]Feustel SM, Meissner M, Liesenfeld O: Toxoplasma gondii and the blood-brain barrier. Virulence 2012, 3:182-192.
- [9]Suzuki Y: Host resistance in the brain against Toxoplasma gondii. J Infect Dis 2002, 185(Suppl 1):S58-S65.
- [10]Wang X, Michie SA, Xu B, Suzuki Y: Importance of IFN-gamma-mediated expression of endothelial VCAM-1 on recruitment of CD8+ T cells into the brain during chronic infection with Toxoplasma gondii. J Interferon Cytokine Res 2007, 27:329-338.
- [11]Sullivan WJ Jr, Jeffers V: Mechanisms of Toxoplasma gondii persistence and latency. FEMS Microbiol Rev 2012, 36:717-733.
- [12]Andenmatten N, Egarter S, Jackson AJ, Jullien N, Herman JP, Meissner M: Conditional genome engineering in Toxoplasma gondii uncovers alternative invasion mechanisms. Nat Methods 2013, 10:125-127.
- [13]Kandasamy K, Keerthikumar S, Goel R, Mathivanan S, Patankar N, Shafreen B, Renuse S, Pawar H, Ramachandra YL, Acharya PK, Ranganathan P, Chaerkady R, Prasad TSK, Pandey A: Human Proteinpedia: a unified discovery resource for proteomics research. Nucleic Acids Res 2009, 37:D773-D781.
- [14]Vizcaino JA, Cote RG, Csordas A, Dianes JA, Fabregat A, Foster JM, Griss J, Alpi E, Birim M, Contell J, O’Kelly G, Schoenegger A, Ovelleiro D, Perez-Riverol Y, Reisinger F, Rios D, Wang R, Hermjakob H: The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res 2013, 41:D1063-D1069.
- [15]Access guide to human proteinpedia In Current Protocols in Bioinformatics. Volume Chapter 1. John Wiley & Sons, Inc; 2013. Unit 1 21
- [16]Goel R, Harsha HC, Pandey A, Prasad TSK: Human protein reference database and human proteinpedia as resources for phosphoproteome analysis. Mol Biosyst 2012, 8:453-463.
- [17]Sandhya VK, Raju R, Verma R, Advani J, Sharma R, Radhakrishnan A, Nanjappa V, Narayana J, Somani BL, Mukherjee KK, Pandey A, Christopher R, Prasad TSK: A network map of BDNF/TRKB and BDNF/p75NTR signaling system. J Cell Commun Signal 2013, 7:301-307.
- [18]Namekata K, Watanabe H, Guo X, Kittaka D, Kawamura K, Kimura A, Harada C, Harada T: Dock3 regulates BDNF-TrkB signaling for neurite outgrowth by forming a ternary complex with Elmo and RhoG. Genes Cells 2012, 17:688-697.
- [19]Bachis A, Avdoshina V, Zecca L, Parsadanian M, Mocchetti I: Human immunodeficiency virus type 1 alters brain-derived neurotrophic factor processing in neurons. J Neurosci 2012, 32:9477-9484.
- [20]Hamby ME, Coppola G, Ao Y, Geschwind DH, Khakh BS, Sofroniew MV: Inflammatory mediators alter the astrocyte transcriptome and calcium signaling elicited by multiple G-protein-coupled receptors. J Neurosci 2012, 32:14489-14510.
- [21]Habegger de Sorrentino A, Lopez R, Motta P, Marinic K, Sorrentino A, Iliovich E, Rubio AE, Quarleri J, Salomon H: HLA class II involvement in HIV-associated Toxoplasmic encephalitis development. Clin Immunol 2005, 115:133-137.
- [22]Pae CU, Drago A, Kim JJ, Mandelli L, De Ronchi D, Serretti A: The impact of heat shock protein 70 gene variations on clinical presentation and outcome in schizophrenic inpatients. Neuropsychobiology 2009, 59:135-141.
- [23]Pae CU, Kim TS, Kwon OJ, Artioli P, Serretti A, Lee CU, Lee SJ, Lee C, Paik IH, Kim JJ: Polymorphisms of heat shock protein 70 gene (HSPA1A, HSPA1B and HSPA1L) and schizophrenia. Neurosci Res 2005, 53:8-13.
- [24]Scheele S, Nystrom A, Durbeej M, Talts JF, Ekblom M, Ekblom P: Laminin isoforms in development and disease. J Mol Med (Berl) 2007, 85:825-836.
- [25]Schneider AG, Abi Abdallah DS, Butcher BA, Denkers EY: Toxoplasma gondii triggers phosphorylation and nuclear translocation of dendritic cell STAT1 while simultaneously blocking IFNγ-induced STAT1 transcriptional activity. PLoS One 2013, 8:e60215.
- [26]Collazo CM, Yap GS, Hieny S, Caspar P, Feng CG, Taylor GA, Sher A: The function of gamma interferon-inducible GTP-binding protein IGTP in host resistance to Toxoplasma gondii is Stat1 dependent and requires expression in both hematopoietic and nonhematopoietic cellular compartments. Infect Immun 2002, 70:6933-6939.
- [27]Derouin F, Leport C, Pueyo S, Morlat P, Letrillart B, Chene G, Ecobichon JL, Luft B, Aubertin J, Hafner R, Vildé JL, Salamon R: Predictive value of Toxoplasma gondii antibody titres on the occurrence of toxoplasmic encephalitis in HIV-infected patients. ANRS 005/ACTG 154 Trial Group. AIDS 1996, 10:1521-1527.
- [28]Sarciron ME, Gherardi A: Cytokines involved in Toxoplasmic encephalitis. Scand J Immunol 2000, 52:534-543.
- [29]Alfonzo M, Blanc D, Troadec C, Huerre M, Eliaszewicz M, Gonzalez G, Koyanagi Y, Scott-Algara D: Temporary restoration of immune response against Toxoplasma gondii in HIV-infected individuals after HAART, as studied in the hu-PBMC-SCID mouse model. Clin Exp Immunol 2002, 129:411-419.
- [30]Lejeune M, Miró JM, De Lazzari E, García F, Claramonte X, Martínez E, Ribera E, Arrizabalaga J, Arribas JR, Domingo P, Ferrer E, Plana M, Valls ME, Podzamczer D, Pumarola T, Jacquet A, Mallolas J, Gatell JM, Gallart T, Spanish Toxoplasma gondii Study: Restoration of T cell responses to toxoplasma gondii after successful combined antiretroviral therapy in patients with AIDS with previous toxoplasmic encephalitis. Clin Infect Dis 2011, 52:662-670.
- [31]Chitra P, Bakthavatsalam B, Palvannan T: Beta-2 microglobulin as an immunological marker to assess the progression of human immunodeficiency virus infected patients on highly active antiretroviral therapy. Clin Chim Acta 2011, 412:1151-1154.
- [32]Robert-Gangneux F, Gangneux JP, Vu N, Jaillard S, Guiguen C, Amiot L: High level of soluble HLA-G in amniotic fluid is correlated with congenital transmission of Toxoplasma gondii. Clin Immunol 2011, 138:129-134.
- [33]Kim SY, Li J, Bentsman G, Brooks AI, Volsky DJ: Microarray analysis of changes in cellular gene expression induced by productive infection of primary human astrocytes: implications for HAD. J Neuroimmunol 2004, 157:17-26.
- [34]Winkler JM, Chaudhuri AD, Fox HS: Translating the brain transcriptome in neuroAIDS: from non-human primates to humans. J Neuroimmune Pharmacol 2012, 7:372-379.
- [35]Malemud CJ, Miller AH: Pro-inflammatory cytokine-induced SAPK/MAPK and JAK/STAT in rheumatoid arthritis and the new anti-depression drugs. Expert Opin Ther Targets 2008, 12:171-183.
- [36]Denkers EY, Bzik DJ, Fox BA, Butcher BA: An inside job: hacking into Janus kinase/signal transducer and activator of transcription signaling cascades by the intracellular protozoan Toxoplasma gondii. Infect Immun 2012, 80:476-482.
- [37]Henriquez SA, Brett R, Alexander J, Pratt J, Roberts CW: Neuropsychiatric disease and Toxoplasma gondii infection. Neuroimmunomodulation 2009, 16:122-133.
- [38]Liu YL, Fann CS, Liu CM, Chen WJ, Wu JY, Hung SI, Chen CH, Jou YS, Liu SK, Hwang TJ, Hsieh MH, Chang CC, Yang WC, Lin JJ, Chou FH, Faraone SV, Tsuang MT, Hwu HG: RASD2, MYH9, and CACNG2 genes at chromosome 22q12 associated with the subgroup of schizophrenia with non-deficit in sustained attention and executive function. Biol Psychiatry 2008, 64:789-796.
- [39]Yang HC, Liu CM, Liu YL, Chen CW, Chang CC, Fann CS, Chiou JJ, Yang UC, Chen CH, Faraone SV, Tsuang MT, Hwu HG: The DAO gene is associated with schizophrenia and interacts with other genes in the Taiwan Han Chinese population. PLoS One 2013, 8:e60099.
- [40]Johnson JN, Ahrendt E, Braun JE: CSPalpha: the neuroprotective J protein. Biochem Cell Biol 2010, 88:157-165.
- [41]Fatemi SH, Folsom TD, Thuras PD: Deficits in GABA(B) receptor system in schizophrenia and mood disorders: a postmortem study. Schizophr Res 2011, 128:37-43.
- [42]Bouthour W, Leroy F, Emmanuelli C, Carnaud M, Dahan M, Poncer JC, Levi S: A human mutation in Gabrg2 associated with generalized epilepsy alters the membrane dynamics of GABAA receptors. Cereb Cortex 2012, 22:1542-1553.
- [43]Allen AS, Berkovic SF, Cossette P, Delanty N, Dlugos D, Eichler EE, Epstein MP, Glauser T, Goldstein DB, Han Y, Heinzen EL, Hitomi Y, Howell KB, Johnson MR, Kuzniecky R, Lowenstein DH, Lu YF, Madou MR, Marson AG, Mefford HC, Esmaeeli Nieh S, O'Brien TJ, Ottman R, Petrovski S, Poduri A, Ruzzo EK, Scheffer IE, Sherr EH, Yuskaitis CJ, Epi4K Consortium; Epilepsy Phenome/Genome Project: De novo mutations in epileptic encephalopathies. Nature 2013, 501:217-221.
- [44]Eugene E, Depienne C, Baulac S, Baulac M, Fritschy JM, Le Guern E, Miles R, Poncer JC: GABA(A) receptor gamma 2 subunit mutations linked to human epileptic syndromes differentially affect phasic and tonic inhibition. J Neurosci 2007, 27:14108-14116.
- [45]Magri C, Gardella R, Valsecchi P, Barlati SD, Guizzetti L, Imperadori L, Bonvicini C, Tura GB, Gennarelli M, Sacchetti E, Barlati S: Study on GRIA2, GRIA3 and GRIA4 genes highlights a positive association between schizophrenia and GRIA3 in female patients. Am J Med Genet B Neuropsychiatr Genet 2008, 147B:745-753.
- [46]Fergusson DM, Boden JM, Horwood LJ, Miller AL, Kennedy MA: MAOA, abuse exposure and antisocial behaviour: 30-year longitudinal study. Br J Psychiatry 2011, 198:457-463.
- [47]Eastwood SL, Harrison PJ: Decreased expression of vesicular glutamate transporter 1 and complexin II mRNAs in schizophrenia: further evidence for a synaptic pathology affecting glutamate neurons. Schizophr Res 2005, 73:159-172.
- [48]Tropeano M, Wöber-Bingöl C, Karwautz A, Wagner G, Vassos E, Campos-de-Sousa S, Graggaber A, Zesch HE, Kienbacher C, Natriashvili S, Kanbur I, Wöber C, Collier DA: Association analysis of STX1A gene variants in common forms of migraine. Cephalalgia 2012, 32:203-212.
- [49]Depienne C, Gourfinkel-An I, Baulac S, LeGuern E: Genes in infantile epileptic encephalopathies. In Jasper’s Basic Mechanisms of the Epilepsies. 4th edition. Edited by Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV. Bethesda (MD): National Center for Biotechnology Information (US); 2012.
- [50]Vatta M, Tennison MB, Aylsworth AS, Turcott CM, Guerra MP, Eng CM, Yang Y: A novel STXBP1 mutation causes focal seizures with neonatal onset. J Child Neurol 2012, 27:811-814.
- [51]Greco B, Manago F, Tucci V, Kao HT, Valtorta F, Benfenati F: Autism-related behavioral abnormalities in synapsin knockout mice. Behav Brain Res 2013, 251:65-74.
- [52]Fernández-Chacón R, Königstorfer A, Gerber SH, García J, Matos MF, Stevens CF, Brose N, Rizo J, Rosenmund C, Südhof TC: Synaptotagmin I functions as a calcium regulator of release probability. Nature 2001, 410:41-49.
- [53]Mortensen PB, Norgaard-Pedersen B, Waltoft BL, Sorensen TL, Hougaard D, Yolken RH: Early infections of Toxoplasma gondii and the later development of schizophrenia. Schizophr Bull 2007, 33:741-744.
- [54]Schwarcz R, Hunter CA: Toxoplasma gondii and schizophrenia: linkage through astrocyte-derived kynurenic acid? Schizophr Bull 2007, 33:652-653.
- [55]Dzierszinski F, Pepper M, Stumhofer JS, LaRosa DF, Wilson EH, Turka LA, Halonen SK, Hunter CA, Roos DS: Presentation of Toxoplasma gondii antigens via the endogenous major histocompatibility complex class I pathway in nonprofessional and professional antigen-presenting cells. Infect Immun 2007, 75:5200-5209.
- [56]Schluter D, Lohler J, Deckert M, Hof H, Schwendemann G: Toxoplasma encephalitis of immunocompetent and nude mice: immunohistochemical characterisation of Toxoplasma antigen, infiltrates and major histocompatibility complex gene products. J Neuroimmunol 1991, 31:185-198.
- [57]Schmechel DE, Edwards CL: Fibromyalgia, mood disorders, and intense creative energy: A1AT polymorphisms are not always silent. Neurotoxicology 2012, 33:1454-1472.
- [58]Jesse S, Lehnert S, Jahn O, Parnetti L, Soininen H, Herukka S-K, Steinacker P, Tawfik S, Tumani H, von Arnim CAF, Neumann M, Kretzschmar HA, Kulaksiz H, Lenter M, Wiltfang J, Ferger B, Hengerer B, Otto M: Differential sialylation of serpin A1 in the early diagnosis of Parkinson’s disease dementia. PLoS One 2012, 7:e48783.
- [59]Maes OC, Kravitz S, Mawal Y, Su H, Liberman A, Mehindate K, Berlin D, Sahlas DJ, Chertkow HM, Bergman H, Melmed C, Schipper HM: Characterization of alpha1-antitrypsin as a heme oxygenase-1 suppressor in Alzheimer plasma. Neurobiol Dis 2006, 24:89-100.
- [60]Yang Y, Wan C, Li H, Zhu H, La Y, Xi Z, Chen Y, Jiang L, Feng G, He L: Altered levels of acute phase proteins in the plasma of patients with schizophrenia. Anal Chem 2006, 78:3571-3576.
- [61]Lee TW, Montgomery JM, Birch NP: The serine protease inhibitor neuroserpin regulates the growth and maturation of hippocampal neurons through a non-inhibitory mechanism. J Neurochem 2012, 121:561-574.
- [62]Tamminga CA, Stan AD, Wagner AD: The hippocampal formation in schizophrenia. Am J Psychiatry 2010, 167:1178-1193.
- [63]Cordelier P, Strayer DS: Mechanisms of alpha1-antitrypsin inhibition of cellular serine proteases and HIV-1 protease that are essential for HIV-1 morphogenesis. Biochim Biophys Acta 2003, 1638:197-207.
- [64]van Buul JD, Allingham MJ, Samson T, Meller J, Boulter E, Garcia-Mata R, Burridge K: RhoG regulates endothelial apical cup assembly downstream from ICAM1 engagement and is involved in leukocyte trans-endothelial migration. J Cell Biol 2007, 178:1279-1293.
- [65]Yamaki N, Negishi M, Katoh H: RhoG regulates anoikis through a phosphatidylinositol 3-kinase-dependent mechanism. Exp Cell Res 2007, 313:2821-2832.
- [66]Roppenser B, Roder A, Hentschke M, Ruckdeschel K, Aepfelbacher M: Yersinia enterocolitica differentially modulates RhoG activity in host cells. J Cell Sci 2009, 122:696-705.
- [67]Ishikawa Y, Katoh H, Nakamura K, Mori K, Negishi M: Developmental changes in expression of small GTPase RhoG mRNA in the rat brain. Brain Res Mol Brain Res 2002, 106:145-150.
- [68]O’Kane EM, Stone TW, Morris BJ: Distribution of Rho family GTPases in the adult rat hippocampus and cerebellum. Brain Res Mol Brain Res 2003, 114:1-8.
- [69]Fujimoto S, Negishi M, Katoh H: RhoG promotes neural progenitor cell proliferation in mouse cerebral cortex. Mol Biol Cell 2009, 20:4941-4950.
- [70]Kim JY, Oh MH, Bernard LP, Macara IG, Zhang H: The RhoG/ELMO1/Dock180 signaling module is required for spine morphogenesis in hippocampal neurons. J Biol Chem 2011, 286:37615-37624.
- [71]Kumar GS, Venugopal AK, Mahadevan A, Renuse S, Harsha HC, Sahasrabuddhe NA, Pawar H, Sharma R, Kumar P, Rajagopalan S, Waddell K, Ramachandra YL, Satishchandra P, Chaerkady R, Prasad TSK, Shankar K, Pandey A: Quantitative proteomics for identifying biomarkers for tuberculous meningitis. Clin Proteomics 2012, 9:12. BioMed Central Full Text
- [72]Puttamallesh VN, Sreenivasamurthy SK, Singh PK, Harsha HC, Ganjiwale A, Broor S, Pandey A, Narayana J, Prasad TSK: Proteomic profiling of serum samples from chikungunya-infected patients provides insights into host response. Clin Proteomics 2013, 10:14. BioMed Central Full Text
- [73]Kandasamy K, Mohan SS, Raju R, Keerthikumar S, Kumar GSS, Venugopal AK, Telikicherla D, Navarro JD, Mathivanan S, Pecquet C, Gollapudi SK, Tattikota SG, Mohan S, Padhukasahasram H, Subbannayya Y, Goel R, Jacob HKC, Zhong J, Sekhar R, Nanjappa V, Balakrishnan L, Subbaiah R, Ramachandra YL, Rahiman BA, Prasad TSK, Lin J-X, Houtman JCD, Desiderio S, Renauld J-C, Constantinescu SN, et al.: NetPath: a public resource of curated signal transduction pathways. Genome Biol 2010, 11:R3. BioMed Central Full Text
PDF