期刊论文详细信息
Cell & Bioscience
Zinc ferrite nanoparticle-induced cytotoxicity and oxidative stress in different human cells
Maqusood Ahamed1  Mohd Javed Akhtar1  Hisham A. Alhadlaq2 
[1] King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia;Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
关键词: Reactive oxygen species;    Cytotoxicity;    Human health;    HepG2;    A431;    A549;    Zinc ferrite nanoparticles;   
Others  :  1230702
DOI  :  10.1186/s13578-015-0046-6
 received in 2015-06-30, accepted in 2015-09-07,  发布年份 2015
【 摘 要 】

Background

Zinc ferrite nanoparticles (NPs) have shown potential to be used in biomedical field such as magnetic resonance imaging and hyperthermia. However, there is limited information concerning the biological response of zinc ferrite NPs. This study was designed to evaluate the cytotoxicity of zinc ferrite NPs in three widely used in vitro cell culture models: human lung epithelial (A549), skin epithelial (A431) and liver (HepG2) cells. Zinc ferrite NPs were characterized by electron microscopy and dynamic light scattering. Cell viability, cell membrane damage, reactive oxygen species (ROS), glutathione (GSH), mitochondrial membrane potential (MMP), transcriptional level of apoptotic genes were determined in zinc ferrite NPs exposed cells.

Results

Zinc ferrite NPs were almost spherical shaped with an average size of 44 nm. Zinc ferrite NPs induced dose-dependent cytotoxicity (MTT and LDH) and oxidative stress (ROS and GSH) in all three types of cells in the dosage range of 10–40 µg/ml. Transcriptional level of tumor suppressor gene p53 and apoptotic genes (bax, caspase-3 and caspase-9) were up-regulated while the anti-apoptotic gene bcl-2 was down-regulated in cells after zinc ferrite NPs exposure. Furthermore, higher activity of caspase-3 and caspase-9 enzymes was also observed in zinc ferrite NPs treated cells. ROS generation, MMP loss and cell death in all three types of cells were abrogated by N-acetyl cysteine (ROS scavenger), which suggests that oxidative stress might be one of the plausible mechanisms of zinc ferrite NPs cytotoxicity. It is worth mentioning that there was marginally difference in the sensitivity of three cell lines against zinc ferrite NPs exposure. Cytotoxicity of zinc ferrite NPs were in following order; A549 > HepG2 > A431.

Conclusion

Altogether, zinc ferrite NPs induced cytotoxicity and oxidative stress in A549, A431 and HepG2 cells, which is likely to be mediated through ROS generation. This study warrants further investigation to explore the potential mechanisms of toxicity of zinc ferrite NPs in normal cells as well as in animal models.

【 授权许可】

   
2015 Alhadlaq et al.

附件列表
Files Size Format View
Fig.8. 20KB Image download
Fig.7. 34KB Image download
Fig.6. 51KB Image download
Fig.5. 22KB Image download
Fig.4. 47KB Image download
Fig.3. 24KB Image download
Fig.2. 21KB Image download
Fig.1. 63KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.7.

Fig.8.

【 参考文献 】
  • [1]Sun C, Lee JSH, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev. 2008; 60:1252-1265.
  • [2]Taylor EN, Webster TJ. The use of superparamagnetic nanoparticles for prosthetic biofilm prevention. Int J Nanomedicine. 2009; 4:145-152.
  • [3]Klostergaard J, Seeney CE. Magnetic nanovectors for drug delivery. Nanomedicine. 2012; 8 Suppl 1:S37-S50.
  • [4]Song Q, Zhang ZJ. Correlation between spin-orbital coupling and the superparamagnetic properties in magnetite and cobalt ferrite spinel nanocrystals. J Phys Chem B. 2006; 110:11205-11209.
  • [5]Willard MA, Kurihara LK, Carpenter EE, Calvin S, Harris VG. Chemically prepared magnetic nanoparticles. Int Mat Rev. 2004; 49:125-170.
  • [6]Hafeli UO, Riffle JS, Harris-Shekhawat L, Carmichael-Baranauskas A, Mark F, Dailey JP et al.. Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol Pharm. 2009; 6(5):1417-1428.
  • [7]Lartigue L, Wilhelm C, Servais J, Factor C, Dencausse A, Bacri J-C et al.. Nanomagnetic sensing of blood plasma protein interactions with iron oxide nanoparticles: impact on macrophage uptake. ACS Nano. 2012; 6(3):2665-2678.
  • [8]Barcena C, Sra AK, Chaubey GS, Khemtong C, Liu JP, Gao J. Zinc ferrite nanoparticles as MRI contrast agents. Chem Commun. 2008; 19:2224-2226.
  • [9]Saquib Q, Al-Khedhairy AA, Ahmad J, Siddiqui MA, Dwivedi S, Khan ST, Musarrat J. Zinc ferrite nanoparticles activate IL-1b, NFKB1, CCL21 and NOS2 signaling to induce mitochondrial dependent intrinsic apoptotic pathway in WISH cells. Toxicol Appl Pharmacol. 2013; 273(2):289-297.
  • [10]Vochita G, Creanga D, Focanici-Ciurlica EL. Magnetic nanoparticle genetic impact on root tip cells of sunflower seedlings. Water Air Soil Pollut. 2012; 223:2541-2549.
  • [11]Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005; 113:823-839.
  • [12]Madl AK, Pinkerton KE. Health effects of inhaled engineered and incidental nanoparticles. Crit Rev Toxicol. 2009; 39:629-658.
  • [13]Ursini CL, Cavallo D, Fresegna AM, Ciervo A, Maiello R, Tassone P, Buresti G, Casciardi S, Iavicoli S. Evaluation of cytotoxic, genotoxic and inflammatory response in human alveolar and bronchial epithelial cells exposed to titanium dioxide nanoparticles. J Appl Toxicol. 2014; 34(11):1209-1219.
  • [14]Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Stone V. Identification of the mechanisms that drive the toxicity of TiO 2 particulates: the contribution of physicochemical characteristics. Part Fibre Toxicol. 2009; 6:33. BioMed Central Full Text
  • [15]Chen Z, Meng H, Yuan H, Xing G, Chen C, Zhao F et al.. Identification of target organs of copper nanoparticles with ICPMS technique. J Radioanal Nucl Chem. 2007; 272:599-603.
  • [16]Wang B, Feng W, Wang M, Wang T, Gu T, Zhu M et al.. Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice. J Nanopart Res. 2008; 2008(10):263-276.
  • [17]Barillet S, Jugan ML, Laye M, Leconte Y, Herlin-Boime N, Reynaud C et al.. In vitro evaluation of SiC nanoparticles impact on A549 pulmonary cells: cyto-, genotoxicity and oxidative stress. Toxicol Lett. 2010; 198:324-330.
  • [18]Shukla RK, Sharma V, Pandey AK, Singh S, Sultana S, Dhawan A. ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol In Vitro. 2011; 25:231-241.
  • [19]Piret JP, Jacques D, Audinot JN, Mejia J, Boilan E. Copper (II) oxide nanoparticles penetrate into HepG2 cells, exert cytotoxicity via oxidative stress and induce pro-inflammatory response. Nanoscale. 2012; 2012(4):7168-7184.
  • [20]Ahamed M, Alhadlaq HA, Alam J, Khan MA, Ali D, Alarafi S. Iron oxide nanoparticle-induced oxidative stress and genotoxicity in human skin epithelial and lung epithelial cell lines. Curr Pharm Des. 2013; 19(37):6681-6690.
  • [21]Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006; 311:622-627.
  • [22]Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A. Engineered ZnO and TiO(2) nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic Biol Med. 2011; 51(10):1872-1881.
  • [23]Sharma V, Anderson D, Dhawan A. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis. 2012; 17(8):852-870.
  • [24]Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology. 2014; 8(3):233-278.
  • [25]Ahamed M, Akhtar MJ, Siddiqui MA, Ahmad J, Musarrat J, Al-Khedhairy AA, Alrokayan SA. Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. Toxicology. 2011; 2011(283):101-108.
  • [26]Ahamed M, Akhtar MJ, Alhadlaq HA, Khan MAM, Alrokayan SA. Comparative cytotoxic response of nickel ferrite nanoparticles in human liver HepG2 and breast MFC-7 cancer cells. Chemosphere. 2015; 135:278-288.
  • [27]Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci. 2008; 101:239-253.
  • [28]Mossman T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983; 65:55-63.
  • [29]Wang H, Joseph JA. Quantifying cellular oxidative stress by dichlorofluorescin assay using microplate reader. Free Radic Biol Med. 1999; 27:612-616.
  • [30]Siddiqui MA, Alhadlaq HA, Ahmad J, Al-Khedhairy AA, Musarrat J, Ahamed M. Copper oxide nanoparticles induced mitochondria mediated apoptosis in human hepatocarcinoma cells. PLoS One. 2013; 8:e69534.
  • [31]Ahmad J, Ahamed M, Akhtar MJ, Alrokayan SA, Siddiqui MA, Musarrat J, Al-Khedhairy AA. Apoptosis induction by amorphous silica nanoparticles mediated through reactive oxygen species generation in human liver cell line HepG2. Toxicol Appl Pharmacol. 2012; 259:160-168.
  • [32]Ellman GI. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959; 82:70-77.
  • [33]Zhang Y, Jiang L, Jiang L, Geng C, Li L, Shao J, Zhong L. Possible involvement of oxidative stress in potassium bromateinduced genotoxicity in human HepG2 cells. Chem Biol Int. 2011; 189:186-191.
  • [34]Ahamed M, Alhadlaq HA. Nickel nanoparticle-induced dose-dependent cyto-genotoxicity in human breast carcinoma MCF-7cells. Onco Targets Ther. 2014; 7:269-280.
  • [35]Berasain C, Garcia-Trevijano ER, Castillo J, Erroba E, Santamaria M, Lee DC. Novel role for amphiregulin in protection from liver injury. J Biol Chem. 2005; 280:19012-19020.
  • [36]Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72:248-254.
  • [37]Ahamed M, AlSalhi MS, Siddiqui MKJ. Silver nanoparticle applications and human health. Clin Chim Acta. 2010; 411:1841-1848.
  • [38]Horev-Azaria L, Baldi G, Beno D, Bonacchi D, Golla-Schindler U, Kirkpatrick JC et al.. Predictive toxicology of cobalt ferrite nanoparticles: comparative in vitro study of different cellular models using methods of knowledge discovery from data. Part Fibre Toxicol. 2013; 10:32. BioMed Central Full Text
  • [39]Yu KO, Grabinski CM, Schrand AM, Murdock RC, Wang W, Gu B et al.. Toxicity of amorphous silica nanoparticles in mouse keratinocytes. J Nanopart Res. 2009; 11:15-24.
  • [40]Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A. DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett. 2009; 185:211-218.
  • [41]Bai W, Zhang Z, Tian W, He X, Ma Y, Zhao Y, Chai Z. Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. J Nanopart Res. 2009; 12:1645-1654.
  • [42]Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain S, Rowe J. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol. 2010; 242:263-269.
  • [43]Lundqvist M, Stigler J, Elia G, Lynch I, Cerdevall T, Dawson K. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA. 2008; 105:14265-14270.
  • [44]Lynch I, Dawson K. Protein–nanoparticle interactions. Nanotoday. 2008; 3:40-47.
  • [45]Mahmoudi M, Laurent S, Shokrgozar MA, Hosseinkhani M. Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell “vision” versus physicochemical properties of nanoparticles. ACS Nano. 2011; 5:7263-7266.
  • [46]Hussain S, Thomassen L, Ferecatu I, Borot MC, Andreau K, Martens J et al.. Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells. Part Fibre Toxicol. 2010; 7:10. BioMed Central Full Text
  • [47]Saquib Q, Al-Khedhairy AA, Siddiqui MA, Abou-Tarboush FM, Azam A, Musarrat J. Titanium dioxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in human amnion epithelial (WISH) cells. Toxicol In Vitro. 2012; 2012(26):351-361.
  • [48]Singh N, Jenkins GJS, Nelson BC, Marquis BJ, Maffeis TGG, Brown AP et al.. The role of iron redox state in the genotoxicity of ultrafine superparamagnetic iron oxide nanoparticles. Biomaterials. 2012; 33:163-170.
  • [49]Soenen SJH, Himmelreich U, Nuytten N, Pisanic TR, Ferrari A, De Cuyper M. Intracellular nanoparticle coating stability determines nanoparticle diagnostics efficacy and cell functionality. Small. 2010; 6:2136-2145.
  • [50]Kruszewski M, Iwaneńko T. Labile iron pool correlates with iron content in the nucleus and the formation of oxidative DNA damage in mouse lymphoma L5178Y cell lines. Acta Biochim Pol. 2003; 50:211-215.
  • [51]Petrat F, de Groot H, Rauen U. Subcellular distribution of chelatable iron: a laser scanning microscopic study in isolated hepatocytes and liver endothelial cells. Biochem J. 2001; 356:61-69.
  • [52]Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011; 11(2):85-95.
  • [53]Al-Qubaisi MS, Rasedee A, Flaifel MH, Ahmad SH, Hussein-Al-Ali S, Hussein MZ et al.. Cytotoxicity of nickel zinc ferrite nanoparticles on cancer cells of epithelial origin. Int J Nanomedicine. 2013; 8:2497-2508.
  • [54]Porter AG, Jänicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999; 6:99-104.
  • [55]Farnebo M, Bykov VN, Wiman KG. The p53 tumor suppressor: a master regulator of diverse cellular processes and therapeutic target in cancer. Biochem Biophys Res Commun. 2010; 396:85-89.
  文献评价指标  
  下载次数:19次 浏览次数:12次